{"title":"Robust Cooperative Transport System with Model Error Compensator Using Multiple Robots with Suction Cups","authors":"N. Matsunaga, Kazuhi Murata, Hiroshi Okajima","doi":"10.20965/jrm.2023.p1583","DOIUrl":null,"url":null,"abstract":"In cooperative transport systems, multiple robots work together to transport objects that are difficult to transport with a single robot. In recent years, multi-robot systems that cooperate to transport objects have been researched. However, during the transfer of objects, misalignment occurs between the ideal and actual grasp positions. In an automatic transport system, a grasping error can cause an error in the trajectory of the object, significantly reducing the transport efficiency. In this paper, a control system that allows robust cooperative transport control using a model error compensator is proposed for a leader–follower system in which the transported object is the virtual leader and the followers are ideally arranged. This system adds robustness to the operation of a conventional cooperative transport system by using the ideal formation of robots. The effectiveness of the proposed method was evaluated through cooperative transport experiments using two ideal formations for passing through a narrow entrance. The cooperative transport system could not pass through the narrow entrance using the conventional method; however, the system using the compensator passed through the narrow entrance smoothly.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In cooperative transport systems, multiple robots work together to transport objects that are difficult to transport with a single robot. In recent years, multi-robot systems that cooperate to transport objects have been researched. However, during the transfer of objects, misalignment occurs between the ideal and actual grasp positions. In an automatic transport system, a grasping error can cause an error in the trajectory of the object, significantly reducing the transport efficiency. In this paper, a control system that allows robust cooperative transport control using a model error compensator is proposed for a leader–follower system in which the transported object is the virtual leader and the followers are ideally arranged. This system adds robustness to the operation of a conventional cooperative transport system by using the ideal formation of robots. The effectiveness of the proposed method was evaluated through cooperative transport experiments using two ideal formations for passing through a narrow entrance. The cooperative transport system could not pass through the narrow entrance using the conventional method; however, the system using the compensator passed through the narrow entrance smoothly.