Jibing Chen, Shisen Huang, Nan Chen, Chengze Yu, Shanji Yu, Bowen Liu, Maohui Hu, Ruidi Li
{"title":"Effect of forming angle on the microstructure and properties of GH3536 nickel-based superalloy formed by SLM","authors":"Jibing Chen, Shisen Huang, Nan Chen, Chengze Yu, Shanji Yu, Bowen Liu, Maohui Hu, Ruidi Li","doi":"10.1108/rpj-04-2023-0149","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to identify the optimal forming angle for the selective laser melting (SLM) process and evaluate the mechanical properties of the SLM-formed GH3536 alloy in the aero-engine field.\n\n\nDesign/methodology/approach\nForming the samples with optimized parameters and analyzing the microstructure and properties of the block samples in different forming angles with scanning electron microscope, XRD, etc. so as to analyze and reveal the laws and mechanism of the block samples in different forming angles by SLM.\n\n\nFindings\nThere are few cracks on the construction surface of SLM formed samples, and the microstructure shows columnar subgrains and cellular subgrains. The segregation of metal elements was not observed in the microstructure. The pattern shows strong texture strength on the (111) crystal plane. In the sample, the tensile strength of 60° sample is the highest, the plasticity of 90° forming sample is the best, the comprehensive property of 45° sample is the best and the fracture mode is plastic fracture. The comprehensive performance of the part is the best under the forming angle of 45°. To ensure the part size, performance and support structure processing, additional dimensions are added to the part structure.\n\n\nOriginality/value\nIn this paper, how to make samples with different forming angles is described. Combined with the standard of forged GH3536 alloy, the microstructure and properties of the samples are analyzed, and the optimal forming angle is obtained.\n","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"121 41","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/rpj-04-2023-0149","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This paper aims to identify the optimal forming angle for the selective laser melting (SLM) process and evaluate the mechanical properties of the SLM-formed GH3536 alloy in the aero-engine field.
Design/methodology/approach
Forming the samples with optimized parameters and analyzing the microstructure and properties of the block samples in different forming angles with scanning electron microscope, XRD, etc. so as to analyze and reveal the laws and mechanism of the block samples in different forming angles by SLM.
Findings
There are few cracks on the construction surface of SLM formed samples, and the microstructure shows columnar subgrains and cellular subgrains. The segregation of metal elements was not observed in the microstructure. The pattern shows strong texture strength on the (111) crystal plane. In the sample, the tensile strength of 60° sample is the highest, the plasticity of 90° forming sample is the best, the comprehensive property of 45° sample is the best and the fracture mode is plastic fracture. The comprehensive performance of the part is the best under the forming angle of 45°. To ensure the part size, performance and support structure processing, additional dimensions are added to the part structure.
Originality/value
In this paper, how to make samples with different forming angles is described. Combined with the standard of forged GH3536 alloy, the microstructure and properties of the samples are analyzed, and the optimal forming angle is obtained.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation