Droplet shedding on hydrophilic and superhydrophobic surfaces under the effect of air shear flow

IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED
Tao Shi, Hanming Yang, Huaqiao Peng, Zuxi Xia
{"title":"Droplet shedding on hydrophilic and superhydrophobic surfaces under the effect of air shear flow","authors":"Tao Shi,&nbsp;Hanming Yang,&nbsp;Huaqiao Peng,&nbsp;Zuxi Xia","doi":"10.1007/s11998-023-00861-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to investigate and compare the behavior of droplets of different volumes on hydrophilic and superhydrophobic surfaces (SHSs) under the effect of air shear flow. The results reveal that the effect of droplet volume on wetting length in the case of a hydrophilic surface is different from that in the case of SHS. On hydrophilic surfaces, droplets with larger volumes exhibit greater wetting length and adhesion, whereas on SHSs, these parameters are similar regardless of droplet volume. Additionally, airflow velocity is one of the critical factors for shear-driven droplet behavior on SHS. At an airspeed of 5 m/s, droplets slide on the SHS; however, they roll on the surface at an airspeed of 15 m/s.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-023-00861-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate and compare the behavior of droplets of different volumes on hydrophilic and superhydrophobic surfaces (SHSs) under the effect of air shear flow. The results reveal that the effect of droplet volume on wetting length in the case of a hydrophilic surface is different from that in the case of SHS. On hydrophilic surfaces, droplets with larger volumes exhibit greater wetting length and adhesion, whereas on SHSs, these parameters are similar regardless of droplet volume. Additionally, airflow velocity is one of the critical factors for shear-driven droplet behavior on SHS. At an airspeed of 5 m/s, droplets slide on the SHS; however, they roll on the surface at an airspeed of 15 m/s.

Abstract Image

Abstract Image

空气剪切流作用下亲水性和超疏水表面上的液滴脱落
本研究旨在研究和比较亲水性表面和超疏水表面(SHS)上不同体积的液滴在空气剪切流作用下的行为。结果表明,液滴体积对亲水表面润湿长度的影响与对超疏水表面润湿长度的影响不同。在亲水性表面上,液滴体积越大,润湿长度和附着力越大,而在 SHS 表面上,无论液滴体积大小,这些参数都是相似的。此外,气流速度也是 SHS 上剪切驱动液滴行为的关键因素之一。当气流速度为 5 米/秒时,液滴会在 SHS 上滑动;但当气流速度为 15 米/秒时,液滴会在表面滚动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Coatings Technology and Research
Journal of Coatings Technology and Research 工程技术-材料科学:膜
CiteScore
4.30
自引率
8.70%
发文量
130
审稿时长
2.5 months
期刊介绍: Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信