{"title":"From solid-like to floating: evolution of dense granular cluster in dissipation behavior","authors":"Kai Zhang, Meng Chen, Farong Kou, Fugui Sun","doi":"10.1007/s10035-023-01385-0","DOIUrl":null,"url":null,"abstract":"<div><p>Granular materials used for vibration reduction often show dense granular clusters in engineering practice. Nevertheless, there are great differences in the damping effect between different dense granular clusters. In this work, discrete element simulations are performed to investigate the evolution of dense granular cluster in dissipation behavior by vertically vibrating a quasi-2D granular container with constant excitation frequency but different excitation amplitude, which reveals nine different granular motion patterns. Simulation results indicate that, with the increase of excitation amplitude, the internal configuration of dense granular cluster in granular container evolves gradually from static-disordered to dynamic-disordered and then dynamic-ordered, and finally becomes loose. The scope of high damping granular phases (HDGPs) is finalized based on the friction dissipation mechanism of granular balls in four dynamic-ordered dense granular clusters, where there may be reversible granular jamming transitions. The universal dynamical behavior of dense granular clusters in HDGPs is revealed, which contributes to obtaining the optimal granular damping effect by controlling the motion pattern of vibrated granular materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"26 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01385-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Granular materials used for vibration reduction often show dense granular clusters in engineering practice. Nevertheless, there are great differences in the damping effect between different dense granular clusters. In this work, discrete element simulations are performed to investigate the evolution of dense granular cluster in dissipation behavior by vertically vibrating a quasi-2D granular container with constant excitation frequency but different excitation amplitude, which reveals nine different granular motion patterns. Simulation results indicate that, with the increase of excitation amplitude, the internal configuration of dense granular cluster in granular container evolves gradually from static-disordered to dynamic-disordered and then dynamic-ordered, and finally becomes loose. The scope of high damping granular phases (HDGPs) is finalized based on the friction dissipation mechanism of granular balls in four dynamic-ordered dense granular clusters, where there may be reversible granular jamming transitions. The universal dynamical behavior of dense granular clusters in HDGPs is revealed, which contributes to obtaining the optimal granular damping effect by controlling the motion pattern of vibrated granular materials.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.