Optimizing chemotherapy treatment outcomes using metaheuristic optimization algorithms: A case study

IF 1 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Prakas Gopal Samy, J. Kanesan, IrfanAnjum Badruddin, S. Kamangar, N. A. Ahammad
{"title":"Optimizing chemotherapy treatment outcomes using metaheuristic optimization algorithms: A case study","authors":"Prakas Gopal Samy, J. Kanesan, IrfanAnjum Badruddin, S. Kamangar, N. A. Ahammad","doi":"10.3233/bme-230149","DOIUrl":null,"url":null,"abstract":"BACKGROUND: This study explores the dynamics of a mathematical model, utilizing ordinary differential equations (ODE), to depict the interplay between cancer cells and effector cells under chemotherapy. The stability of the equilibrium points in the model is analysed using the Jacobian matrix and eigenvalues. Additionally, bifurcation analysis is conducted to determine the optimal values for the control parameters. OBJECTIVE: To evaluate the performance of the model and control strategies, benchmarking simulations are performed using the PlatEMO platform. METHODS: The Pure Multi-objective Optimal Control Problem (PMOCP) and the Hybrid Multi-objective Optimal Control Problem (HMOCP) are two different forms of optimal control problems that are solved using revolutionary metaheuristic optimisation algorithms. The utilization of the Hypervolume (HV) performance indicator allows for the comparison of various metaheuristic optimization algorithms in their efficacy for solving the PMOCP and HMOCP. RESULTS: Results indicate that the MOPSO algorithm excels in solving the HMOCP, with M-MOPSO outperforming for PMOCP in HV analysis. CONCLUSION: Despite not directly addressing immediate clinical concerns, these findings indicates that the stability shifts at critical thresholds may impact treatment efficacy.","PeriodicalId":9109,"journal":{"name":"Bio-medical materials and engineering","volume":"45 22","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-medical materials and engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/bme-230149","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND: This study explores the dynamics of a mathematical model, utilizing ordinary differential equations (ODE), to depict the interplay between cancer cells and effector cells under chemotherapy. The stability of the equilibrium points in the model is analysed using the Jacobian matrix and eigenvalues. Additionally, bifurcation analysis is conducted to determine the optimal values for the control parameters. OBJECTIVE: To evaluate the performance of the model and control strategies, benchmarking simulations are performed using the PlatEMO platform. METHODS: The Pure Multi-objective Optimal Control Problem (PMOCP) and the Hybrid Multi-objective Optimal Control Problem (HMOCP) are two different forms of optimal control problems that are solved using revolutionary metaheuristic optimisation algorithms. The utilization of the Hypervolume (HV) performance indicator allows for the comparison of various metaheuristic optimization algorithms in their efficacy for solving the PMOCP and HMOCP. RESULTS: Results indicate that the MOPSO algorithm excels in solving the HMOCP, with M-MOPSO outperforming for PMOCP in HV analysis. CONCLUSION: Despite not directly addressing immediate clinical concerns, these findings indicates that the stability shifts at critical thresholds may impact treatment efficacy.
利用元启发式优化算法优化化疗疗效:案例研究
背景:本研究利用常微分方程(ODE)探讨了一个数学模型的动力学,以描述化疗过程中癌细胞与效应细胞之间的相互作用。利用雅各布矩阵和特征值分析了模型中平衡点的稳定性。此外,还进行了分岔分析,以确定控制参数的最佳值。目的:为了评估模型和控制策略的性能,使用 PlatEMO 平台进行了基准模拟。方法:纯多目标最优控制问题(PMOCP)和混合多目标最优控制问题(HMOCP)是最优控制问题的两种不同形式,使用革命性的元启发式优化算法来解决。利用超体积(HV)性能指标可以比较各种元启发式优化算法在解决 PMOCP 和 HMOCP 方面的功效。结果:结果表明,MOPSO 算法在解决 HMOCP 方面表现出色,在 HV 分析中,M-MOPSO 优于 PMOCP。结论:尽管这些发现并不能直接解决当前的临床问题,但它们表明临界阈值的稳定性变化可能会影响治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bio-medical materials and engineering
Bio-medical materials and engineering 工程技术-材料科学:生物材料
CiteScore
1.80
自引率
0.00%
发文量
73
审稿时长
6 months
期刊介绍: The aim of Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems. Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信