Design of a fluorescent method by using ZnS QDs-gelatin nanocomposite for sensing toxic 2-mercaptobenzothiazole in water samples

IF 2.1 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Elham Pournamdari , Leila Niknam
{"title":"Design of a fluorescent method by using ZnS QDs-gelatin nanocomposite for sensing toxic 2-mercaptobenzothiazole in water samples","authors":"Elham Pournamdari ,&nbsp;Leila Niknam","doi":"10.1080/17415993.2023.2297708","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the residue of toxic 2-mercaptobenzothiazole, a semi-volatile heteroaromatic, was extracted from wastewater using a new spectrofluorometric method. The method is based on measuring 2-Mercaptobenzothiazole the quenching effect on the fluorescence intensity of ZnS quantum dot–gelatin nanocomposite in (pH 4, λ<sub>ex</sub> 310 and λ<sub>em</sub> 345 nm, in time 60 s). Different factors affecting the reaction were studied and optimized. The calibration plot is linear in the concentration range of (0.05–10.0 µgL<sup>−1</sup>). The relative standard deviations and the detection limit of the method were ±1.0% and 0.05 μgL<sup>−1</sup>, respectively. Observed, outcomes confirmed the suitability recovery and a meager detection limit for analyzing toxic 2-Mercaptobenzothiazole in water samples. The preliminary results from this study demonstrate that this new method can be used to analyze 2-mercaptobenzothiazole in wastewater.</p></div>","PeriodicalId":17081,"journal":{"name":"Journal of Sulfur Chemistry","volume":"45 3","pages":"Pages 408-421"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sulfur Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S174159932300106X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the residue of toxic 2-mercaptobenzothiazole, a semi-volatile heteroaromatic, was extracted from wastewater using a new spectrofluorometric method. The method is based on measuring 2-Mercaptobenzothiazole the quenching effect on the fluorescence intensity of ZnS quantum dot–gelatin nanocomposite in (pH 4, λex 310 and λem 345 nm, in time 60 s). Different factors affecting the reaction were studied and optimized. The calibration plot is linear in the concentration range of (0.05–10.0 µgL−1). The relative standard deviations and the detection limit of the method were ±1.0% and 0.05 μgL−1, respectively. Observed, outcomes confirmed the suitability recovery and a meager detection limit for analyzing toxic 2-Mercaptobenzothiazole in water samples. The preliminary results from this study demonstrate that this new method can be used to analyze 2-mercaptobenzothiazole in wastewater.

利用 ZnS QDs-明胶纳米复合材料设计一种荧光方法,用于检测水样中的有毒 2-巯基苯并噻唑
本研究采用一种新的光谱荧光法从废水中提取了有毒的2-巯基苯并噻唑(一种半挥发性杂芳烃)残留物。该方法基于测量 2-巯基苯并噻唑对 ZnS 量子点-明胶纳米复合材料荧光强度的淬灭效应(pH 4,λex 310 和 λem 345 nm,时间 60 s)。对影响反应的不同因素进行了研究和优化。校准图在浓度范围(0.05-10.0 µgL-1)内呈线性关系。方法的相对标准偏差和检测限分别为 ±1.0% 和 0.05 μgL-1。观察结果证实,该方法适用于分析水样中有毒的 2-巯基苯并噻唑,且检出限较低。这项研究的初步结果表明,这种新方法可用于分析废水中的 2-巯基苯并噻唑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sulfur Chemistry
Journal of Sulfur Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
4.10
自引率
9.10%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Journal of Sulfur Chemistry is an international journal for the dissemination of scientific results in the rapidly expanding realm of sulfur chemistry. The journal publishes high quality reviews, full papers and communications in the following areas: organic and inorganic chemistry, industrial chemistry, materials and polymer chemistry, biological chemistry and interdisciplinary studies directly related to sulfur science. Papers outlining theoretical, physical, mechanistic or synthetic studies pertaining to sulfur chemistry are welcome. Hence the target audience is made up of academic and industrial chemists with peripheral or focused interests in sulfur chemistry. Manuscripts that truly define the aims of the journal include, but are not limited to, those that offer: a) innovative use of sulfur reagents; b) new synthetic approaches to sulfur-containing biomolecules, materials or organic and organometallic compounds; c) theoretical and physical studies that facilitate the understanding of sulfur structure, bonding or reactivity; d) catalytic, selective, synthetically useful or noteworthy transformations of sulfur containing molecules; e) industrial applications of sulfur chemistry; f) unique sulfur atom or molecule involvement in interfacial phenomena; g) descriptions of solid phase or combinatorial methods involving sulfur containing substrates. Submissions pertaining to related atoms such as selenium and tellurium are also welcome. Articles offering routine heterocycle formation through established reactions of sulfur containing substrates are outside the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信