Morphology evolution of CoNi‐LDHs synergistically engineered by precipitant and variable cobalt for asymmetric supercapacitor with superior cycling stability

EcoEnergy Pub Date : 2023-12-22 DOI:10.1002/ece2.21
Xuan Wang, Hongzhi Ding, Wei Luo, Yi Yu, Qingliang Chen, Bin Luo, Mingjiang Xie, Xuefeng Guo
{"title":"Morphology evolution of CoNi‐LDHs synergistically engineered by precipitant and variable cobalt for asymmetric supercapacitor with superior cycling stability","authors":"Xuan Wang, Hongzhi Ding, Wei Luo, Yi Yu, Qingliang Chen, Bin Luo, Mingjiang Xie, Xuefeng Guo","doi":"10.1002/ece2.21","DOIUrl":null,"url":null,"abstract":"Cobalt–nickel layered double hydroxides (CoNi‐LDHs) have been extensively synthesized through precipitation methods for their application in supercapacitors (SC). However, the influence of precipitant quantity on both morphology evolution and SC performance has been an underexplored area. This study systematically examines the morphological changes in CoNi‐LDHs by varying the alkaline quantity and evaluates the performance of asymmetric SC. The findings reveal a progressive transformation in the morphology of CoNi‐LDHs with an increase in alkaline content, starting from nanorod (Co1Ni2(OH)2‐1HMA), progressing to nanorod/nansosheet composite (Co1Ni2(OH)2‐4HMA), and ultimately evolving into nanosheet (Co1Ni2(OH)2‐8HMA). This evolution is attributed to the synergetic effect of the precipitant and variable cobalt, which provides multiple valences and induces morphology evolution. The resulting LDHs demonstrate different SC performances: (1) Co1Ni2(OH)2‐1HMA exhibits a maximum capacitance of 1764 F/g, while Co1Ni2(OH)2‐4HMA and Co1Ni2(OH)2‐8HMA show values of 1460 F/g and 1676 F/g, respectively; (2) rate capabilities showcase percentages of 60.5% for Co1Ni2(OH)2‐1HMA, 83.1% for Co1Ni2(OH)2‐4HMA, and 66.3% for Co1Ni2(OH)2‐8HMA; (3) maximum energy densities are recorded at 72.1 Wh/kg for Co1Ni2(OH)2‐1HMA, 41.3 Wh/kg for Co1Ni2(OH)2‐4HMA, and 62.8 Wh/kg for Co1Ni2(OH)2‐8HMA. Particularly, Co1Ni2(OH)2‐8HMA exhibits superlong cycling stability, retaining approximately 99% capacitance after 25000 consecutive charge/discharge cycles at 7.0 A/g. This result underscores its significant potential for efficient energy storage applications.","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoEnergy","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1002/ece2.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cobalt–nickel layered double hydroxides (CoNi‐LDHs) have been extensively synthesized through precipitation methods for their application in supercapacitors (SC). However, the influence of precipitant quantity on both morphology evolution and SC performance has been an underexplored area. This study systematically examines the morphological changes in CoNi‐LDHs by varying the alkaline quantity and evaluates the performance of asymmetric SC. The findings reveal a progressive transformation in the morphology of CoNi‐LDHs with an increase in alkaline content, starting from nanorod (Co1Ni2(OH)2‐1HMA), progressing to nanorod/nansosheet composite (Co1Ni2(OH)2‐4HMA), and ultimately evolving into nanosheet (Co1Ni2(OH)2‐8HMA). This evolution is attributed to the synergetic effect of the precipitant and variable cobalt, which provides multiple valences and induces morphology evolution. The resulting LDHs demonstrate different SC performances: (1) Co1Ni2(OH)2‐1HMA exhibits a maximum capacitance of 1764 F/g, while Co1Ni2(OH)2‐4HMA and Co1Ni2(OH)2‐8HMA show values of 1460 F/g and 1676 F/g, respectively; (2) rate capabilities showcase percentages of 60.5% for Co1Ni2(OH)2‐1HMA, 83.1% for Co1Ni2(OH)2‐4HMA, and 66.3% for Co1Ni2(OH)2‐8HMA; (3) maximum energy densities are recorded at 72.1 Wh/kg for Co1Ni2(OH)2‐1HMA, 41.3 Wh/kg for Co1Ni2(OH)2‐4HMA, and 62.8 Wh/kg for Co1Ni2(OH)2‐8HMA. Particularly, Co1Ni2(OH)2‐8HMA exhibits superlong cycling stability, retaining approximately 99% capacitance after 25000 consecutive charge/discharge cycles at 7.0 A/g. This result underscores its significant potential for efficient energy storage applications.
通过沉淀剂和可变钴协同设计的 CoNi-LDHs 形貌演变,用于具有卓越循环稳定性的不对称超级电容器
钴镍层状双氢氧化物(CoNi-LDHs)已通过沉淀法被广泛合成,并应用于超级电容器(SC)中。然而,沉淀剂数量对形态演化和超级电容器性能的影响一直是一个未得到充分探索的领域。本研究系统地考察了 CoNi-LDHs 在不同碱量下的形态变化,并评估了非对称 SC 的性能。研究结果表明,随着碱含量的增加,CoNi-LDHs 的形态发生了渐进式变化,从纳米棒(Co1Ni2(OH)2-1HMA)开始,逐渐发展为纳米棒/纳米片复合体(Co1Ni2(OH)2-4HMA),最终演变为纳米片(Co1Ni2(OH)2-8HMA)。这种演变归因于沉淀剂和可变钴的协同效应,沉淀剂和可变钴提供了多种价位并诱导了形态演变。由此产生的 LDH 具有不同的 SC 性能:(1) Co1Ni2(OH)2-1HMA 的最大电容值为 1764 F/g,而 Co1Ni2(OH)2-4HMA 和 Co1Ni2(OH)2-8HMA 的电容值分别为 1460 F/g 和 1676 F/g;(2) Co1Ni2(OH)2-1HMA 的速率能力展示率为 60.5%,Co1Ni2(OH)2-4HMA 为 83.1%,Co1Ni2(OH)2-8HMA 为 66.3%;(3) Co1Ni2(OH)2-1HMA 的最大能量密度为 72.1 Wh/kg,Co1Ni2(OH)2-4HMA 为 41.3 Wh/kg,Co1Ni2(OH)2-8HMA 为 62.8 Wh/kg。特别是,Co1Ni2(OH)2-8HMA 表现出超长的循环稳定性,在 7.0 A/g 的条件下连续充放电 25000 次后仍能保持约 99% 的电容量。这一结果凸显了其在高效储能应用方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信