Md. Manzar Nezami, Md. Danish Equbal, Md. Fahim Ansari, Majed A. Alotaibi, Hasmat Malik, Fausto Pedro García Márquez, Mohammad Asef Hossaini
{"title":"A novel artificial neural network approach for residual life estimation of paper insulation in oil-immersed power transformers","authors":"Md. Manzar Nezami, Md. Danish Equbal, Md. Fahim Ansari, Majed A. Alotaibi, Hasmat Malik, Fausto Pedro García Márquez, Mohammad Asef Hossaini","doi":"10.1049/elp2.12407","DOIUrl":null,"url":null,"abstract":"<p>Avoiding financial losses requires preventing catastrophic oil-filled power transformer breakdowns. Continuous online transformer monitoring is needed. The authors use paper insulation to evaluate transformer health for continuous online transformer monitoring. The study suggests a new artificial intelligence method for estimating paper insulation residual life in oil-immersed power transformers. The four artificial intelligence models use backpropagation-based neural networks to predict paper insulation lifespan. Four primary transformer insulating paper failure indices—degree of polymerisation, 2-furfuraldehyde, carbon monoxide, and carbon dioxide—form the basis of these models. Each model, including the backpropagation-based neural networks, estimates paper insulation life using one failure index, along with moisture and temperature data. Optimisation techniques enhance hidden layer neurons and epoch count for improved performance. Results are validated against literature-based life models, establishing a precise input–output correlation. This method accurately predicts the remaining useable life of power transformer paper insulation, enabling utilities to take proactive measures for safe and efficient transformer operation.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"18 4","pages":"477-488"},"PeriodicalIF":1.5000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12407","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12407","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Avoiding financial losses requires preventing catastrophic oil-filled power transformer breakdowns. Continuous online transformer monitoring is needed. The authors use paper insulation to evaluate transformer health for continuous online transformer monitoring. The study suggests a new artificial intelligence method for estimating paper insulation residual life in oil-immersed power transformers. The four artificial intelligence models use backpropagation-based neural networks to predict paper insulation lifespan. Four primary transformer insulating paper failure indices—degree of polymerisation, 2-furfuraldehyde, carbon monoxide, and carbon dioxide—form the basis of these models. Each model, including the backpropagation-based neural networks, estimates paper insulation life using one failure index, along with moisture and temperature data. Optimisation techniques enhance hidden layer neurons and epoch count for improved performance. Results are validated against literature-based life models, establishing a precise input–output correlation. This method accurately predicts the remaining useable life of power transformer paper insulation, enabling utilities to take proactive measures for safe and efficient transformer operation.
期刊介绍:
IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear.
The scope of the journal includes the following:
The design and analysis of motors and generators of all sizes
Rotating electrical machines
Linear machines
Actuators
Power transformers
Railway traction machines and drives
Variable speed drives
Machines and drives for electrically powered vehicles
Industrial and non-industrial applications and processes
Current Special Issue. Call for papers:
Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf