{"title":"An analysis of interfacial debonding in beaded fiber composites","authors":"Min Xu, H. Daniel Wagner, Bingbing An","doi":"10.1007/s10704-023-00753-4","DOIUrl":null,"url":null,"abstract":"<div><p>Intermittent beading is a novel design that holds great potential for simultaneous improvement of strength and toughness of composites. Despite the progress in fabrication of beaded fiber composites, the mechanisms of fracture in such composites are largely unknown. In this study, calculations are carried out for interfacial debonding in a beaded fiber composite subjected to tensile loading. The post-yield strain softening followed by strain hardening of polymer matrix, and debonding of the fiber-bead, bead-matrix and fiber-matrix interfaces are accounted for in the numerical analyses. It is found that interfacial debonding can activate plastic deformation in the bead and polymer matrix, contributing to toughening of the beaded fiber composite. We have identified that the bead-matrix interfacial debonding is the major mechanism controlling plastic deformation in the matrix. The low cohesive strength of the bead-matrix interface plays a role in suppressing development of shear bands in the polymer matrix, enhancing plastic dissipation of the composite. The high toughness of the bead-matrix interface enables large plastic zone in the matrix, promoting plastic dissipation. For the fiber-bead interface, there is an increase in plastic dissipation of the composite with decreasing cohesive strength, while high interface toughness can amplify plastic dissipation. In addition, we reveal that weak fiber-matrix interface is capable of spreading plastic deformation in the matrix, increasing plastic dissipation of the composite. The findings of this study can shed new light on the fracture mechanisms of beaded fiber composites.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"245 3","pages":"195 - 208"},"PeriodicalIF":2.2000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00753-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Intermittent beading is a novel design that holds great potential for simultaneous improvement of strength and toughness of composites. Despite the progress in fabrication of beaded fiber composites, the mechanisms of fracture in such composites are largely unknown. In this study, calculations are carried out for interfacial debonding in a beaded fiber composite subjected to tensile loading. The post-yield strain softening followed by strain hardening of polymer matrix, and debonding of the fiber-bead, bead-matrix and fiber-matrix interfaces are accounted for in the numerical analyses. It is found that interfacial debonding can activate plastic deformation in the bead and polymer matrix, contributing to toughening of the beaded fiber composite. We have identified that the bead-matrix interfacial debonding is the major mechanism controlling plastic deformation in the matrix. The low cohesive strength of the bead-matrix interface plays a role in suppressing development of shear bands in the polymer matrix, enhancing plastic dissipation of the composite. The high toughness of the bead-matrix interface enables large plastic zone in the matrix, promoting plastic dissipation. For the fiber-bead interface, there is an increase in plastic dissipation of the composite with decreasing cohesive strength, while high interface toughness can amplify plastic dissipation. In addition, we reveal that weak fiber-matrix interface is capable of spreading plastic deformation in the matrix, increasing plastic dissipation of the composite. The findings of this study can shed new light on the fracture mechanisms of beaded fiber composites.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.