Hamada E. Ali, S. F. Bucher, M. Bernhardt‐Römermann, C. Römermann
{"title":"Biochar application can mitigate the negative impacts of drought in invaded experimental grasslands as shown by a functional traits approach","authors":"Hamada E. Ali, S. F. Bucher, M. Bernhardt‐Römermann, C. Römermann","doi":"10.3897/neobiota.89.109244","DOIUrl":null,"url":null,"abstract":"Climate, land-use, and invasive plants are among the important drivers of ecosystem functions through the changes in functional composition. In this study, we studied the effects of climate (drought), land-use (Biochar application), and the presence of invasive species on the productivity and performance of invaded experimental grasslands. We ran a greenhouse experiment under controlled conditions, in which we grew a combination of the three native species Silene gallica, Brassica nigra and Phalaris minor and the invasive species Avena fatua, being subjected to four different treatments: Biochar+drought, Biochar, drought, and control. We measured the productivity of native and invasive species as total biomass and root to shoot ratio (RSR) and the performance by measuring several plant functional traits (plant height, specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (Nmass), leaf carbon content (Cmass) and total chlorophyll (Chltotal) of all individuals occurring in each plot. The study showed that invasive species were more productive (higher total biomass and lower RSR) and performed better (taller plants, higher SLA, Nmass, Cmass and Chltotal and lower LDMC) than the native species under drought conditions as well as with Biochar application. Accordingly, in contrast to our expectations, the lower productivity and performance of native compared to invasive species under drought were not mitigated by Biochar application. These results provided a deeper understanding of the interplay between climate, land-use, and biological invasion, which is crucial for predicting the consequences of changes in functional composition on ecosystem functions and consequently restoration of grasslands.","PeriodicalId":54290,"journal":{"name":"Neobiota","volume":"1 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neobiota","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3897/neobiota.89.109244","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Climate, land-use, and invasive plants are among the important drivers of ecosystem functions through the changes in functional composition. In this study, we studied the effects of climate (drought), land-use (Biochar application), and the presence of invasive species on the productivity and performance of invaded experimental grasslands. We ran a greenhouse experiment under controlled conditions, in which we grew a combination of the three native species Silene gallica, Brassica nigra and Phalaris minor and the invasive species Avena fatua, being subjected to four different treatments: Biochar+drought, Biochar, drought, and control. We measured the productivity of native and invasive species as total biomass and root to shoot ratio (RSR) and the performance by measuring several plant functional traits (plant height, specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (Nmass), leaf carbon content (Cmass) and total chlorophyll (Chltotal) of all individuals occurring in each plot. The study showed that invasive species were more productive (higher total biomass and lower RSR) and performed better (taller plants, higher SLA, Nmass, Cmass and Chltotal and lower LDMC) than the native species under drought conditions as well as with Biochar application. Accordingly, in contrast to our expectations, the lower productivity and performance of native compared to invasive species under drought were not mitigated by Biochar application. These results provided a deeper understanding of the interplay between climate, land-use, and biological invasion, which is crucial for predicting the consequences of changes in functional composition on ecosystem functions and consequently restoration of grasslands.
NeobiotaAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.10
自引率
7.80%
发文量
0
审稿时长
6 weeks
期刊介绍:
NeoBiota is a peer-reviewed, open-access, rapid online journal launched to accelerate research on alien species and biological invasions: aquatic and terrestrial, animals, plants, fungi and micro-organisms.
The journal NeoBiota is a continuation of the former NEOBIOTA publication series; for volumes 1-8 see http://www.oekosys.tu-berlin.de/menue/neobiota
All articles are published immediately upon editorial approval. All published papers can be freely copied, downloaded, printed and distributed at no charge for the reader. Authors are thus encouraged to post the pdf files of published papers on their homepages or elsewhere to expedite distribution. There is no charge for color.