{"title":"Mucus Transpiration as the Basis for Chronic Cough and Cough Hypersensitivity.","authors":"David A Edwards, Kian Fan Chung","doi":"10.1007/s00408-023-00664-0","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic cough is characterized by a state of cough hypersensitivity. We analyze the process of transpiration, by which water appears to evaporate from laryngeal and tracheal mucus as from the surface of a leaf, as a potential cause of cough hypersensitivity. In this process, osmotic pressure differences form across mucus, pulling water toward the air, and preventing mucus dehydration. Recent research suggests that these osmotic differences grow on encounter with dry and dirty air, amplifying pressure on upper airway epithelia and initiating a cascade of biophysical events that potentially elevate levels of ATP, promote inflammation and acidity, threaten water condensation, and diminish mucus water permeability. Among consequences of this inflammatory cascade is tendency to cough. Studies of isotonic, hypotonic, and hypertonic aerosols targeted to the upper airways give insights to the nature of mucus transpiration and its relationship to a water layer that forms by condensation in the upper airways on exhalation. They also suggest that, while hypertonic NaCl and mannitol may provoke cough and bronchoconstriction, hypertonic salts with permeating anions and non-permeating cations may relieve these same upper respiratory dysfunctions. Understanding of mucus transpiration and its role in cough hypersensitivity can lead to new treatment modalities for chronic cough and other airway dysfunctions promoted by the breathing of dry and dirty air.</p>","PeriodicalId":18163,"journal":{"name":"Lung","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lung","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00408-023-00664-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic cough is characterized by a state of cough hypersensitivity. We analyze the process of transpiration, by which water appears to evaporate from laryngeal and tracheal mucus as from the surface of a leaf, as a potential cause of cough hypersensitivity. In this process, osmotic pressure differences form across mucus, pulling water toward the air, and preventing mucus dehydration. Recent research suggests that these osmotic differences grow on encounter with dry and dirty air, amplifying pressure on upper airway epithelia and initiating a cascade of biophysical events that potentially elevate levels of ATP, promote inflammation and acidity, threaten water condensation, and diminish mucus water permeability. Among consequences of this inflammatory cascade is tendency to cough. Studies of isotonic, hypotonic, and hypertonic aerosols targeted to the upper airways give insights to the nature of mucus transpiration and its relationship to a water layer that forms by condensation in the upper airways on exhalation. They also suggest that, while hypertonic NaCl and mannitol may provoke cough and bronchoconstriction, hypertonic salts with permeating anions and non-permeating cations may relieve these same upper respiratory dysfunctions. Understanding of mucus transpiration and its role in cough hypersensitivity can lead to new treatment modalities for chronic cough and other airway dysfunctions promoted by the breathing of dry and dirty air.
慢性咳嗽的特点是咳嗽过敏。我们分析了蒸腾作用的过程,通过这一过程,喉咙和气管粘液中的水分会像从树叶表面蒸发一样,成为咳嗽过敏症的潜在原因。在这一过程中,粘液之间形成渗透压差,将水分拉向空气,防止粘液脱水。最新研究表明,这些渗透压差在遇到干燥和污浊的空气时会增大,从而放大上呼吸道上皮细胞所承受的压力,并引发一连串的生物物理事件,这些事件可能会提高 ATP 水平,促进炎症和酸度,威胁水的凝结,并降低粘液的透水性。这种炎症级联反应的后果之一就是容易咳嗽。对针对上呼吸道的等渗、低渗和高渗气溶胶进行的研究揭示了粘液蒸腾的性质及其与呼气时在上呼吸道凝结形成的水层之间的关系。这些研究还表明,虽然高渗氯化钠和甘露醇可能会引起咳嗽和支气管收缩,但含有渗透性阴离子和非渗透性阳离子的高渗盐类可能会缓解同样的上呼吸道功能障碍。了解粘液蒸腾作用及其在咳嗽超敏反应中的作用,可以为治疗慢性咳嗽和其他因吸入干燥和污浊空气而引起的气道功能障碍提供新的治疗方法。
期刊介绍:
Lung publishes original articles, reviews and editorials on all aspects of the healthy and diseased lungs, of the airways, and of breathing. Epidemiological, clinical, pathophysiological, biochemical, and pharmacological studies fall within the scope of the journal. Case reports, short communications and technical notes can be accepted if they are of particular interest.