Therapeutic Effects of Hematopoietic Stem Cell Derived From Gene-Edited Mice on β654-Thalassemia.

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2024-03-14 DOI:10.1093/stmcls/sxad096
Dan Lu, Xiuli Gong, Xinbing Guo, Yanwen Chen, Yiwen Zhu, Yudan Fang, Qin Cai, Miao Xu, Hua Yang, Dali Li, Yitao Zeng, Fanyi Zeng
{"title":"Therapeutic Effects of Hematopoietic Stem Cell Derived From Gene-Edited Mice on β654-Thalassemia.","authors":"Dan Lu, Xiuli Gong, Xinbing Guo, Yanwen Chen, Yiwen Zhu, Yudan Fang, Qin Cai, Miao Xu, Hua Yang, Dali Li, Yitao Zeng, Fanyi Zeng","doi":"10.1093/stmcls/sxad096","DOIUrl":null,"url":null,"abstract":"<p><p>β-thalassemia is an inherited blood disease caused by reduced or inadequate β-globin synthesis due to β-globin gene mutation. Our previous study developed a gene-edited mice model (β654-ER mice) by CRISPR/Cas9-mediated genome editing, targeting both the βIVS2-654 (C > T) mutation site and the 3' splicing acceptor site at 579 and corrected abnormal β-globin mRNA splicing in the β654-thalassemia mice. Herein, we further explored the therapeutic effect of the hematopoietic stem cells (HSCs) from β654-ER mice on β-thalassemia by consecutive HSC transplantation. The results indicated that HSC transplantation derived from gene-edited mice can significantly improve the survival rate of mice after lethal radiation doses and effectively achieve hematopoietic reconstruction and long-term hematopoiesis. Clinical symptoms, including hematologic parameters and tissue pathology of transplanted recipients, were significantly improved compared to the non-transplanted β654 mice. The therapeutic effect of gene-edited HSC transplantation demonstrated no significant difference in hematological parameters and tissue pathology compared with wild-type mouse-derived HSCs. Our data revealed that HSC transplantation from gene-edited mice completely recovered the β-thalassemia phenotype. Our study systematically investigated the therapeutic effect of HSCs derived from β654-ER mice on β-thalassemia and further confirmed the efficacy of our gene-editing approach. Altogether, it provided a reference and primary experimental data for the clinical usage of such gene-edited HSCs in the future.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"278-289"},"PeriodicalIF":4.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxad096","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

β-thalassemia is an inherited blood disease caused by reduced or inadequate β-globin synthesis due to β-globin gene mutation. Our previous study developed a gene-edited mice model (β654-ER mice) by CRISPR/Cas9-mediated genome editing, targeting both the βIVS2-654 (C > T) mutation site and the 3' splicing acceptor site at 579 and corrected abnormal β-globin mRNA splicing in the β654-thalassemia mice. Herein, we further explored the therapeutic effect of the hematopoietic stem cells (HSCs) from β654-ER mice on β-thalassemia by consecutive HSC transplantation. The results indicated that HSC transplantation derived from gene-edited mice can significantly improve the survival rate of mice after lethal radiation doses and effectively achieve hematopoietic reconstruction and long-term hematopoiesis. Clinical symptoms, including hematologic parameters and tissue pathology of transplanted recipients, were significantly improved compared to the non-transplanted β654 mice. The therapeutic effect of gene-edited HSC transplantation demonstrated no significant difference in hematological parameters and tissue pathology compared with wild-type mouse-derived HSCs. Our data revealed that HSC transplantation from gene-edited mice completely recovered the β-thalassemia phenotype. Our study systematically investigated the therapeutic effect of HSCs derived from β654-ER mice on β-thalassemia and further confirmed the efficacy of our gene-editing approach. Altogether, it provided a reference and primary experimental data for the clinical usage of such gene-edited HSCs in the future.

基因编辑小鼠的造血干细胞对β654-地中海贫血症的治疗效果。
β地中海贫血是一种遗传性血液病,由β-球蛋白基因突变导致β-球蛋白合成减少或不足引起。我们之前的研究通过CRISPR/Cas9介导的基因组编辑,针对βIVS2-654(C>T)突变位点和579处的3'剪接接受位点,建立了基因编辑小鼠模型(β654-ER小鼠),并纠正了β654-地中海贫血小鼠β-球蛋白mRNA剪接异常。在此,我们进一步探讨了β654-ER小鼠造血干细胞连续移植对β地中海贫血的治疗效果。结果表明,基因编辑小鼠的造血干细胞移植能显著提高致死剂量辐射后小鼠的存活率,有效实现造血重建和长期造血。与未移植的β654小鼠相比,移植受体的血液学指标和组织病理学等临床症状明显改善。与野生型小鼠来源的造血干细胞相比,基因编辑造血干细胞移植的治疗效果在血液学指标和组织病理学方面无明显差异。我们的数据显示,基因编辑小鼠的造血干细胞移植完全恢复了β地中海贫血的表型。我们的研究系统地探讨了β654-ER小鼠来源的造血干细胞对β地中海贫血的治疗效果,并进一步证实了我们的基因编辑方法的有效性。总之,该研究为今后此类基因编辑造血干细胞的临床应用提供了参考和原始实验数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信