On the ultimate strength of heterogeneous slender structures based on multi-scale stress decomposition

IF 5.7 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
J. Orlik, D. Neusius, K. Steiner, M. Krier
{"title":"On the ultimate strength of heterogeneous slender structures based on multi-scale stress decomposition","authors":"J. Orlik,&nbsp;D. Neusius,&nbsp;K. Steiner,&nbsp;M. Krier","doi":"10.1016/j.ijengsci.2023.104010","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an algorithm based on asymptotic methods for computing the effective ultimate and high cyclic fatigue strength of heterogeneous periodic plates, shells, and textiles. The rigorous analysis and convergence proof of this asymptotic method builds upon a series of our previous papers. The method allows to decompose the local stresses as products of periodic stress-concentrations, given as functions of unit cells or graphs/lattices in them, and the macroscopic strain components.</p><p>In addition, this paper establishes bounds for the applicability of the method and presents several examples to demonstrate the qualitative advantages of this approach, e.g. for the standard shear and compression tests for plates. The main objective of this paper is to substantially reduce the problem dimension and complexity, thereby enabling more efficient computations.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"195 ","pages":"Article 104010"},"PeriodicalIF":5.7000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S002072252300201X/pdfft?md5=73782d2c50aaec962e51d43d10cd5e4b&pid=1-s2.0-S002072252300201X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002072252300201X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an algorithm based on asymptotic methods for computing the effective ultimate and high cyclic fatigue strength of heterogeneous periodic plates, shells, and textiles. The rigorous analysis and convergence proof of this asymptotic method builds upon a series of our previous papers. The method allows to decompose the local stresses as products of periodic stress-concentrations, given as functions of unit cells or graphs/lattices in them, and the macroscopic strain components.

In addition, this paper establishes bounds for the applicability of the method and presents several examples to demonstrate the qualitative advantages of this approach, e.g. for the standard shear and compression tests for plates. The main objective of this paper is to substantially reduce the problem dimension and complexity, thereby enabling more efficient computations.

基于多尺度应力分解的异质细长结构的极限强度
本文提出了一种基于渐近法的算法,用于计算异质周期板、壳和纺织品的有效极限强度和高循环疲劳强度。这种渐近方法的严格分析和收敛性证明建立在我们之前一系列论文的基础上。该方法可将局部应力分解为周期应力集中的乘积(作为其中单元格或图形/晶格的函数给出)和宏观应变分量。此外,本文还确定了该方法的适用范围,并列举了几个例子来证明该方法的定性优势,例如板材的标准剪切和压缩试验。本文的主要目的是大幅降低问题的维度和复杂性,从而提高计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Engineering Science
International Journal of Engineering Science 工程技术-工程:综合
CiteScore
11.80
自引率
16.70%
发文量
86
审稿时长
45 days
期刊介绍: The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome. The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process. Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信