Evaporative phase separation in polymer microdroplets with confinement and internal flow

Q3 Materials Science
Mukesh Kumar, Maheshwar Gopu, Senthan Pugalneelam Parameswaran, Prerak Joshi, Dileep Mampallil
{"title":"Evaporative phase separation in polymer microdroplets with confinement and internal flow","authors":"Mukesh Kumar,&nbsp;Maheshwar Gopu,&nbsp;Senthan Pugalneelam Parameswaran,&nbsp;Prerak Joshi,&nbsp;Dileep Mampallil","doi":"10.1016/j.jciso.2023.100101","DOIUrl":null,"url":null,"abstract":"<div><p>Evaporation can drive initially homogeneous multiphase liquid systems out of equilibrium to induce liquid-liquid phase separation (LLPS). Here, we demonstrate evaporative LLPS in microfluidic-generated emulsion microdroplets of polymer mixtures. The evaporation produces distinct polymer phases within the microdroplets. Phase separation occurs even with polymer combinations that do not form distinct phases in sessile droplet evaporation. We attribute this aspect to evaporation-driven solutal Marangoni flows and the interface capture accumulating the nuclei at the apex where the evaporation rate is the maximum. A fast coalescence and growth of the accumulated polymer nuclei occurs inside the droplets, unlike the capillary-flow-induced spread-out of the nuclei along the contact line in sessile drops. Our method of evaporation of the droplet cluster may facilitate studying LLPS in volume-limited environments and have implications for understanding LLPS in biological systems.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X23000284/pdfft?md5=860700b5f5120db38d1265d7471e917e&pid=1-s2.0-S2666934X23000284-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X23000284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Evaporation can drive initially homogeneous multiphase liquid systems out of equilibrium to induce liquid-liquid phase separation (LLPS). Here, we demonstrate evaporative LLPS in microfluidic-generated emulsion microdroplets of polymer mixtures. The evaporation produces distinct polymer phases within the microdroplets. Phase separation occurs even with polymer combinations that do not form distinct phases in sessile droplet evaporation. We attribute this aspect to evaporation-driven solutal Marangoni flows and the interface capture accumulating the nuclei at the apex where the evaporation rate is the maximum. A fast coalescence and growth of the accumulated polymer nuclei occurs inside the droplets, unlike the capillary-flow-induced spread-out of the nuclei along the contact line in sessile drops. Our method of evaporation of the droplet cluster may facilitate studying LLPS in volume-limited environments and have implications for understanding LLPS in biological systems.

Abstract Image

具有封闭性和内部流动性的聚合物微滴中的蒸发相分离
蒸发可使最初均相的多相液体系统失去平衡,从而诱发液-液相分离(LLPS)。在这里,我们展示了微流体产生的聚合物混合物乳液微滴中的蒸发 LLPS。蒸发在微液滴中产生了不同的聚合物相。即使是在无柄液滴蒸发过程中不会形成不同相的聚合物组合,也会发生相分离。我们将这方面的原因归结为蒸发驱动的溶质马兰戈尼流和界面捕获,在蒸发速率最大的顶点积累晶核。累积的聚合物晶核在液滴内部快速凝聚和生长,这与无柄液滴中由毛细管流引起的晶核沿接触线扩散不同。我们的液滴团蒸发方法可能有助于在体积受限的环境中研究 LLPS,并对了解生物系统中的 LLPS 有一定意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JCIS open
JCIS open Physical and Theoretical Chemistry, Colloid and Surface Chemistry, Surfaces, Coatings and Films
CiteScore
4.10
自引率
0.00%
发文量
0
审稿时长
36 days
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信