Mitochondrial fatty acid synthesis is an emergent central regulator of mammalian oxidative metabolism.

Cell metabolism Pub Date : 2024-01-02 Epub Date: 2023-12-20 DOI:10.1016/j.cmet.2023.11.017
Riley J Wedan, Jacob Z Longenecker, Sara M Nowinski
{"title":"Mitochondrial fatty acid synthesis is an emergent central regulator of mammalian oxidative metabolism.","authors":"Riley J Wedan, Jacob Z Longenecker, Sara M Nowinski","doi":"10.1016/j.cmet.2023.11.017","DOIUrl":null,"url":null,"abstract":"<p><p>Contrary to their well-known functions in nutrient breakdown, mitochondria are also important biosynthetic hubs and express an evolutionarily conserved mitochondrial fatty acid synthesis (mtFAS) pathway. mtFAS builds lipoic acid and longer saturated fatty acids, but its exact products, their ultimate destination in cells, and the cellular significance of the pathway are all active research questions. Moreover, why mitochondria need mtFAS despite their well-defined ability to import fatty acids is still unclear. The identification of patients with inborn errors of metabolism in mtFAS genes has sparked fresh research interest in the pathway. New mammalian models have provided insights into how mtFAS coordinates many aspects of oxidative mitochondrial metabolism and raise questions about its role in diseases such as obesity, diabetes, and heart failure. In this review, we discuss the products of mtFAS, their function, and the consequences of mtFAS impairment across models and in metabolic disease.</p>","PeriodicalId":93927,"journal":{"name":"Cell metabolism","volume":" ","pages":"36-47"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10843818/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cmet.2023.11.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contrary to their well-known functions in nutrient breakdown, mitochondria are also important biosynthetic hubs and express an evolutionarily conserved mitochondrial fatty acid synthesis (mtFAS) pathway. mtFAS builds lipoic acid and longer saturated fatty acids, but its exact products, their ultimate destination in cells, and the cellular significance of the pathway are all active research questions. Moreover, why mitochondria need mtFAS despite their well-defined ability to import fatty acids is still unclear. The identification of patients with inborn errors of metabolism in mtFAS genes has sparked fresh research interest in the pathway. New mammalian models have provided insights into how mtFAS coordinates many aspects of oxidative mitochondrial metabolism and raise questions about its role in diseases such as obesity, diabetes, and heart failure. In this review, we discuss the products of mtFAS, their function, and the consequences of mtFAS impairment across models and in metabolic disease.

线粒体脂肪酸合成是哺乳动物氧化代谢的一个新兴中心调节因子。
与众所周知的营养物质分解功能相反,线粒体也是重要的生物合成枢纽,并表达进化保守的线粒体脂肪酸合成(mtFAS)途径。mtFAS 生成硫辛酸和更长的饱和脂肪酸,但其确切产物、在细胞中的最终目的地以及该途径的细胞意义都是目前研究的热点问题。此外,尽管线粒体具有明确的输入脂肪酸的能力,但为什么线粒体需要 mtFAS,目前仍不清楚。mtFAS 基因先天性代谢错误患者的发现引发了对该途径的新的研究兴趣。新的哺乳动物模型揭示了 mtFAS 如何协调线粒体氧化代谢的许多方面,并提出了它在肥胖、糖尿病和心力衰竭等疾病中的作用问题。在这篇综述中,我们将讨论 mtFAS 的产物、它们的功能以及 mtFAS 在各种模型和代谢性疾病中受损的后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信