Hiroyuki Suzuki, Tomohiro Tanaka, Yuma Kudo, Mayuki Tawara, Aoi Hirayama, Mika K Kaneko, Yukinari Kato
{"title":"A Rat Anti-Mouse CD39 Monoclonal Antibody for Flow Cytometry.","authors":"Hiroyuki Suzuki, Tomohiro Tanaka, Yuma Kudo, Mayuki Tawara, Aoi Hirayama, Mika K Kaneko, Yukinari Kato","doi":"10.1089/mab.2023.0018","DOIUrl":null,"url":null,"abstract":"<p><p>By converting extracellular adenosine triphosphate to adenosine, CD39 is involved in adenosine metabolism. The extracellular adenosine plays a critical role in the immune suppression of the tumor microenvironment. Therefore, the inhibition of CD39 activity by monoclonal antibodies (mAbs) is thought to be one of the important strategies for tumor therapy. In this study, we developed novel mAbs for mouse CD39 (mCD39) using the Cell-Based Immunization and Screening (CBIS) method. One of the established anti-mCD39 mAbs, C<sub>39</sub>Mab-2 (rat IgG<sub>2a</sub>, lambda), reacted with mCD39-overexpressed Chinese hamster ovary-K1 (CHO/mCD39) and an endogenously mCD39-expressed cell line (SN36) by flow cytometry. The kinetic analysis using flow cytometry indicated that the dissociation constant (<i>K</i><sub>D</sub>) values of C<sub>39</sub>Mab-2 for CHO/mCD39 and SN36 were 5.5 × 10<sup>-9</sup> M and 4.9 × 10<sup>-9</sup> M, respectively. These results indicated that C<sub>39</sub>Mab-2 is useful for the detection of mCD39 in flow cytometry.</p>","PeriodicalId":53514,"journal":{"name":"Monoclonal Antibodies in Immunodiagnosis and Immunotherapy","volume":" ","pages":"203-208"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monoclonal Antibodies in Immunodiagnosis and Immunotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/mab.2023.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
By converting extracellular adenosine triphosphate to adenosine, CD39 is involved in adenosine metabolism. The extracellular adenosine plays a critical role in the immune suppression of the tumor microenvironment. Therefore, the inhibition of CD39 activity by monoclonal antibodies (mAbs) is thought to be one of the important strategies for tumor therapy. In this study, we developed novel mAbs for mouse CD39 (mCD39) using the Cell-Based Immunization and Screening (CBIS) method. One of the established anti-mCD39 mAbs, C39Mab-2 (rat IgG2a, lambda), reacted with mCD39-overexpressed Chinese hamster ovary-K1 (CHO/mCD39) and an endogenously mCD39-expressed cell line (SN36) by flow cytometry. The kinetic analysis using flow cytometry indicated that the dissociation constant (KD) values of C39Mab-2 for CHO/mCD39 and SN36 were 5.5 × 10-9 M and 4.9 × 10-9 M, respectively. These results indicated that C39Mab-2 is useful for the detection of mCD39 in flow cytometry.