Ruri Yamaguchi, Hiromu Morikawa, Jun Akatsuka, Yasushi Numata, Aya Noguchi, Takashi Kokumai, Masaharu Ishida, Masamichi Mizuma, Kei Nakagawa, Michiaki Unno, Akimitsu Miyake, Gen Tamiya, Yoichiro Yamamoto, Toru Furukawa
{"title":"Machine Learning of Histopathological Images Predicts Recurrences of Resected Pancreatic Ductal Adenocarcinoma With Adjuvant Treatment.","authors":"Ruri Yamaguchi, Hiromu Morikawa, Jun Akatsuka, Yasushi Numata, Aya Noguchi, Takashi Kokumai, Masaharu Ishida, Masamichi Mizuma, Kei Nakagawa, Michiaki Unno, Akimitsu Miyake, Gen Tamiya, Yoichiro Yamamoto, Toru Furukawa","doi":"10.1097/MPA.0000000000002289","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Pancreatic ductal adenocarcinoma is an intractable disease with frequent recurrence after resection and adjuvant therapy. The present study aimed to clarify whether artificial intelligence-assisted analysis of histopathological images can predict recurrence in patients with pancreatic ductal adenocarcinoma who underwent resection and adjuvant chemotherapy with tegafur/5-chloro-2,4-dihydroxypyridine/potassium oxonate.</p><p><strong>Materials and methods: </strong>Eighty-nine patients were enrolled in the study. Machine-learning algorithms were applied to 10-billion-scale pixel data of whole-slide histopathological images to generate key features using multiple deep autoencoders. Areas under the curve were calculated from receiver operating characteristic curves using a support vector machine with key features alone and by combining with clinical data (age and carbohydrate antigen 19-9 and carcinoembryonic antigen levels) for predicting recurrence. Supervised learning with pathological annotations was conducted to determine the significant features for predicting recurrence.</p><p><strong>Results: </strong>Areas under the curves obtained were 0.73 (95% confidence interval, 0.59-0.87) by the histopathological data analysis and 0.84 (95% confidence interval, 0.73-0.94) by the combinatorial analysis of histopathological data and clinical data. Supervised learning model demonstrated that poor tumor differentiation was significantly associated with recurrence.</p><p><strong>Conclusions: </strong>Results indicate that machine learning with the integration of artificial intelligence-driven evaluation of histopathological images and conventional clinical data provides relevant prognostic information for patients with pancreatic ductal adenocarcinoma.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MPA.0000000000002289","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Pancreatic ductal adenocarcinoma is an intractable disease with frequent recurrence after resection and adjuvant therapy. The present study aimed to clarify whether artificial intelligence-assisted analysis of histopathological images can predict recurrence in patients with pancreatic ductal adenocarcinoma who underwent resection and adjuvant chemotherapy with tegafur/5-chloro-2,4-dihydroxypyridine/potassium oxonate.
Materials and methods: Eighty-nine patients were enrolled in the study. Machine-learning algorithms were applied to 10-billion-scale pixel data of whole-slide histopathological images to generate key features using multiple deep autoencoders. Areas under the curve were calculated from receiver operating characteristic curves using a support vector machine with key features alone and by combining with clinical data (age and carbohydrate antigen 19-9 and carcinoembryonic antigen levels) for predicting recurrence. Supervised learning with pathological annotations was conducted to determine the significant features for predicting recurrence.
Results: Areas under the curves obtained were 0.73 (95% confidence interval, 0.59-0.87) by the histopathological data analysis and 0.84 (95% confidence interval, 0.73-0.94) by the combinatorial analysis of histopathological data and clinical data. Supervised learning model demonstrated that poor tumor differentiation was significantly associated with recurrence.
Conclusions: Results indicate that machine learning with the integration of artificial intelligence-driven evaluation of histopathological images and conventional clinical data provides relevant prognostic information for patients with pancreatic ductal adenocarcinoma.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.