Lorena Chico-Mesa , Enrique Herrero , Rosa M Arán-Ais
{"title":"Tuning carbon dioxide electroreduction through selective facet exposure","authors":"Lorena Chico-Mesa , Enrique Herrero , Rosa M Arán-Ais","doi":"10.1016/j.coche.2023.100997","DOIUrl":null,"url":null,"abstract":"<div><p>The carbon dioxide reduction reaction (CO<sub>2</sub>RR) could reduce the atmospheric CO<sub>2</sub> and store the excess energy obtained by renewable sources. However, proper catalysts are sought to reduce the high overpotentials needed to electroreduce CO<sub>2</sub> and improve the selectivity toward a desired product. Through rational synthetic control, it is possible to obtain nanocrystals (NCs) with a certain shape, which is translated into a preferential surface orientation. Given the structure sensitivity of the CO<sub>2</sub>RR, the use of shape-controlled NCs allows for tuning the activity and selectivity of the reaction. This review analyzes the recent findings about shape-controlled NCs for the CO<sub>2</sub>RR regarding their synthesis, shape-dependent selectivity, and how to twist their catalytic behavior and stability by compositional modifications. The importance of combining in situ and <em>operando</em> techniques that enable proper correlations between the structural and compositional changes of the catalyst under CO<sub>2</sub>RR conditions, and the resulting product distribution is highlighted, aiming for a final transference to real application systems.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"43 ","pages":"Article 100997"},"PeriodicalIF":8.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211339823001016/pdfft?md5=92cca51b56184d2cbd6e4c7ba0773aef&pid=1-s2.0-S2211339823001016-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339823001016","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The carbon dioxide reduction reaction (CO2RR) could reduce the atmospheric CO2 and store the excess energy obtained by renewable sources. However, proper catalysts are sought to reduce the high overpotentials needed to electroreduce CO2 and improve the selectivity toward a desired product. Through rational synthetic control, it is possible to obtain nanocrystals (NCs) with a certain shape, which is translated into a preferential surface orientation. Given the structure sensitivity of the CO2RR, the use of shape-controlled NCs allows for tuning the activity and selectivity of the reaction. This review analyzes the recent findings about shape-controlled NCs for the CO2RR regarding their synthesis, shape-dependent selectivity, and how to twist their catalytic behavior and stability by compositional modifications. The importance of combining in situ and operando techniques that enable proper correlations between the structural and compositional changes of the catalyst under CO2RR conditions, and the resulting product distribution is highlighted, aiming for a final transference to real application systems.
期刊介绍:
Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published.
The goals of each review article in Current Opinion in Chemical Engineering are:
1. To acquaint the reader/researcher with the most important recent papers in the given topic.
2. To provide the reader with the views/opinions of the expert in each topic.
The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts.
Themed sections:
Each review will focus on particular aspects of one of the following themed sections of chemical engineering:
1. Nanotechnology
2. Energy and environmental engineering
3. Biotechnology and bioprocess engineering
4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery)
5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.)
6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials).
7. Process systems engineering
8. Reaction engineering and catalysis.