Optimal linear-Vizing relationships for (total) domination in graphs

Pub Date : 2023-12-18 DOI:10.1002/jgt.23070
Michael A. Henning, Paul Horn
{"title":"Optimal linear-Vizing relationships for (total) domination in graphs","authors":"Michael A. Henning,&nbsp;Paul Horn","doi":"10.1002/jgt.23070","DOIUrl":null,"url":null,"abstract":"<p>A total dominating set in a graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a set of vertices of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that every vertex is adjacent to a vertex of the set. The total domination number <math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>t</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\gamma }_{t}(G)$</annotation>\n </semantics></math> is the minimum cardinality of a total dominating set in <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. In this paper, we study the following open problem posed by Yeo. For each <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 3$</annotation>\n </semantics></math>, find the smallest value, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}$</annotation>\n </semantics></math>, such that every connected graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order at least 3, of order <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, size <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math>, total domination number <math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n <annotation> ${\\gamma }_{t}$</annotation>\n </semantics></math>, and bounded maximum degree <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <annotation> ${\\rm{\\Delta }}$</annotation>\n </semantics></math>, satisfies <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>Δ</mi>\n \n <mo>+</mo>\n \n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <msub>\n <mi>γ</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $m\\le \\frac{1}{2}({\\rm{\\Delta }}+{r}_{{\\rm{\\Delta }}})(n-{\\gamma }_{t})$</annotation>\n </semantics></math>. Henning showed that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}\\le {\\rm{\\Delta }}$</annotation>\n </semantics></math> for all <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 3$</annotation>\n </semantics></math>. Yeo significantly improved this result and showed that <math>\n <semantics>\n <mrow>\n <mn>0.1</mn>\n \n <mi>ln</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&lt;</mo>\n \n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <msqrt>\n <mi>Δ</mi>\n </msqrt>\n </mrow>\n <annotation> $0.1\\mathrm{ln}({\\rm{\\Delta }})\\lt {r}_{{\\rm{\\Delta }}}\\le 2\\sqrt{{\\rm{\\Delta }}}$</annotation>\n </semantics></math> for all <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 3$</annotation>\n </semantics></math>, and posed as an open problem to determine “whether <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}$</annotation>\n </semantics></math> grows proportionally with <math>\n <semantics>\n <mrow>\n <mi>ln</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\mathrm{ln}({\\rm{\\Delta }})$</annotation>\n </semantics></math> or <math>\n <semantics>\n <mrow>\n <msqrt>\n <mi>Δ</mi>\n </msqrt>\n </mrow>\n <annotation> $\\sqrt{{\\rm{\\Delta }}}$</annotation>\n </semantics></math> or some completely different function.” In this paper, we determine the growth of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}$</annotation>\n </semantics></math>, and show that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}$</annotation>\n </semantics></math> is asymptotically <math>\n <semantics>\n <mrow>\n <mi>ln</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\mathrm{ln}({\\rm{\\Delta }})$</annotation>\n </semantics></math> and likewise determine the asymptotics of the analogous constant for standard domination.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A total dominating set in a graph G $G$ is a set of vertices of G $G$ such that every vertex is adjacent to a vertex of the set. The total domination number γ t ( G ) ${\gamma }_{t}(G)$ is the minimum cardinality of a total dominating set in G $G$ . In this paper, we study the following open problem posed by Yeo. For each Δ 3 ${\rm{\Delta }}\ge 3$ , find the smallest value, r Δ ${r}_{{\rm{\Delta }}}$ , such that every connected graph G $G$ of order at least 3, of order n $n$ , size m $m$ , total domination number γ t ${\gamma }_{t}$ , and bounded maximum degree Δ ${\rm{\Delta }}$ , satisfies m 1 2 ( Δ + r Δ ) ( n γ t ) $m\le \frac{1}{2}({\rm{\Delta }}+{r}_{{\rm{\Delta }}})(n-{\gamma }_{t})$ . Henning showed that r Δ Δ ${r}_{{\rm{\Delta }}}\le {\rm{\Delta }}$ for all Δ 3 ${\rm{\Delta }}\ge 3$ . Yeo significantly improved this result and showed that 0.1 ln ( Δ ) < r Δ 2 Δ $0.1\mathrm{ln}({\rm{\Delta }})\lt {r}_{{\rm{\Delta }}}\le 2\sqrt{{\rm{\Delta }}}$ for all Δ 3 ${\rm{\Delta }}\ge 3$ , and posed as an open problem to determine “whether r Δ ${r}_{{\rm{\Delta }}}$ grows proportionally with ln ( Δ ) $\mathrm{ln}({\rm{\Delta }})$ or Δ $\sqrt{{\rm{\Delta }}}$ or some completely different function.” In this paper, we determine the growth of r Δ ${r}_{{\rm{\Delta }}}$ , and show that r Δ ${r}_{{\rm{\Delta }}}$ is asymptotically ln ( Δ ) $\mathrm{ln}({\rm{\Delta }})$ and likewise determine the asymptotics of the analogous constant for standard domination.

分享
查看原文
图中(完全)支配的最佳线性-Vizing 关系
图 G$G$ 中的总支配集是 G$G$ 的顶点集合,使得每个顶点都与该集合的一个顶点相邻。总支配数 γt(G)${\gamma }_{t}(G)$ 是 G$G$ 中总支配集的最小心数。本文将研究 Yeo 提出的如下开放问题。对于每个 Δ≥3$\{rm{\Delta }}ge 3$,求最小值 rΔ${r}_{{rm{/Delta}}$,使得每个阶数至少为 3 的连通图 G$G$,阶数为 n$n$,大小为 m$m$、总支配数 γt${\gamma }_{t}$,以及有界最大度 Δ${rm\{Delta }}$, 满足 m≤12(Δ+rΔ)(n-γt)$m\le \frac{1}{2}({\rm\{Delta }}+{r}_{\{rm\{Delta }}})(n-{\gamma }_{t})$.Henning 证明了 rΔ≤Δ${r}_{{rm\{Delta }}}le {\rm{\Delta }}$ for all Δ≥3$\{rm\{Delta }}\ge 3$。Yeo 大幅改进了这一结果,并证明 0.1ln(Δ)<rΔ≤2Δ$0.1mathrm{ln}({\rm{Delta }})lt {r}_{{{rm\{Delta }}}le 2\sqrt{{{rm{Delta }}}$ for all Δ≥3${\rm{Delta }}\ge 3$、并提出了一个开放性问题,以确定 "rΔ${r}_{{rm\{Delta }}$ 是否与 ln(Δ)$\mathrm{ln}({\rm{\Delta }})$ 或 Δ$sqrt{{rm\{Delta }}$ 或某个完全不同的函数成比例增长。"在本文中,我们确定了 rΔ${r}_{{rm\{Delta }}$ 的增长,并证明 rΔ${r}_{{{rm\{Delta }}$ 是渐近的 ln(Δ)$\mathrm{ln}({\rm\{Delta }})$ ,同样也确定了标准支配的类似常数的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信