Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy

IF 15.7 Q1 OPTICS
Chenshuang Zhang, Bin Yu, Fangrui Lin, Soham Samanta, Huanhuan Yu, Wei Zhang, Yingying Jing, Chunfeng Shang, Danying Lin, Ke Si, Wei Gong, Junle Qu
{"title":"Deep tissue super-resolution imaging with adaptive optical two-photon multifocal structured illumination microscopy","authors":"Chenshuang Zhang, Bin Yu, Fangrui Lin, Soham Samanta, Huanhuan Yu, Wei Zhang, Yingying Jing, Chunfeng Shang, Danying Lin, Ke Si, Wei Gong, Junle Qu","doi":"10.1186/s43074-023-00115-2","DOIUrl":null,"url":null,"abstract":"Visualization of axons and dendritic spines is crucial in neuroscience research. However, traditional microscopy is limited by diffraction-limited resolution and shallow imaging depth, making it difficult to study neuronal dynamics. Two-photon multifocal structured illumination microscopy (2P-MSIM) provides super-resolution imaging along with a reasonably good penetration, but it is vulnerable to optical aberrations in deep tissues. Herein we present a novel non-inertial scanning 2P-MSIM system incorporated with adaptive optics (AO) which allows for super-resolution imaging with effective aberration correction. Our strategy is designed to correct both laser and fluorescence paths simultaneously using a spatial light modulator and a deformable mirror respectively, providing better results than the individual path corrections. The successful implementation of adaptive optical two-photon multifocal structured illumination microscopy (AO 2P-MSIM) has allowed for the super-resolution imaging of neuronal structures in a mouse brain slice at great depths and dynamic morphological characteristics of zebrafish motoneurons in vivo.","PeriodicalId":93483,"journal":{"name":"PhotoniX","volume":"249 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PhotoniX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43074-023-00115-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Visualization of axons and dendritic spines is crucial in neuroscience research. However, traditional microscopy is limited by diffraction-limited resolution and shallow imaging depth, making it difficult to study neuronal dynamics. Two-photon multifocal structured illumination microscopy (2P-MSIM) provides super-resolution imaging along with a reasonably good penetration, but it is vulnerable to optical aberrations in deep tissues. Herein we present a novel non-inertial scanning 2P-MSIM system incorporated with adaptive optics (AO) which allows for super-resolution imaging with effective aberration correction. Our strategy is designed to correct both laser and fluorescence paths simultaneously using a spatial light modulator and a deformable mirror respectively, providing better results than the individual path corrections. The successful implementation of adaptive optical two-photon multifocal structured illumination microscopy (AO 2P-MSIM) has allowed for the super-resolution imaging of neuronal structures in a mouse brain slice at great depths and dynamic morphological characteristics of zebrafish motoneurons in vivo.
利用自适应光学双光子多焦结构照明显微镜进行深层组织超分辨率成像
轴突和树突棘的可视化在神经科学研究中至关重要。然而,传统的显微镜受限于衍射限制的分辨率和较浅的成像深度,难以研究神经元的动态变化。双光子多焦结构照明显微镜(2P-MSIM)可提供超分辨率成像和相当好的穿透性,但在深部组织中容易受到光学畸变的影响。在此,我们介绍了一种新型非惯性扫描 2P-MSIM 系统,该系统结合了自适应光学(AO)技术,可在有效校正像差的同时实现超分辨率成像。我们的设计策略是分别使用空间光调制器和可变形镜同时校正激光和荧光路径,从而提供比单独路径校正更好的结果。自适应光学双光子多焦结构照明显微镜(AO 2P-MSIM)的成功应用,实现了对小鼠大脑切片中神经元结构的超深度超分辨率成像,以及斑马鱼运动神经元的活体动态形态特征成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信