Martha E Mather, Gabriel Granco, Jason S Bergtold, Marcellus M Caldas, Jessica L Heier Stamm, Aleksey Y Sheshukov, Matthew R Sanderson, Melinda D Daniels
{"title":"Achieving success with RISE: A widely implementable, iterative, structured process for mastering interdisciplinary team science collaborations","authors":"Martha E Mather, Gabriel Granco, Jason S Bergtold, Marcellus M Caldas, Jessica L Heier Stamm, Aleksey Y Sheshukov, Matthew R Sanderson, Melinda D Daniels","doi":"10.1093/biosci/biad097","DOIUrl":null,"url":null,"abstract":"Scientific experts from different disciplines often struggle to mesh their specialized perspectives into the shared mindset that is needed to address difficult and persistent environmental, ecological, and societal problems. Many traditional graduate programs provide excellent research and technical skill training. However, these programs often do not teach a systematic way to learn team skills, nor do they offer a protocol for identifying and tackling increasingly integrated interdisciplinary (among disciplines) and transdisciplinary (among researchers and stakeholders) questions. As a result, professionals trained in traditional graduate programs (e.g., current graduate students and employed practitioners) may not have all of the collaborative skills needed to advance solutions to difficult scientific problems. In the present article, we illustrate a tractable, widely implementable structured process called RISE that accelerates the development of these missing skills. The RISE process (Route to Identifying, learning, and practicing interdisciplinary and transdisciplinary team Skills to address difficult Environmental problems) can be used by diverse teams as a tool for research, professional interactions, or training. RISE helps professionals with different expertise learn from each other by repeatedly asking team-developed questions that are tested using an interactive quantitative tool (e.g., agent-based models, machine learning, case studies) applied to a shared problem framework and data set. Outputs from the quantitative tool are then discussed and interpreted as a team, considering all team members’ perspectives, disciplines, and expertise. After this synthesis, RISE is repeated with new questions that the team jointly identified in earlier data interpretation discussions. As a result, individual perspectives, originally informed by disciplinary training, are complemented by a shared understanding of team function and elevated interdisciplinary knowledge.","PeriodicalId":9003,"journal":{"name":"BioScience","volume":"2 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biosci/biad097","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scientific experts from different disciplines often struggle to mesh their specialized perspectives into the shared mindset that is needed to address difficult and persistent environmental, ecological, and societal problems. Many traditional graduate programs provide excellent research and technical skill training. However, these programs often do not teach a systematic way to learn team skills, nor do they offer a protocol for identifying and tackling increasingly integrated interdisciplinary (among disciplines) and transdisciplinary (among researchers and stakeholders) questions. As a result, professionals trained in traditional graduate programs (e.g., current graduate students and employed practitioners) may not have all of the collaborative skills needed to advance solutions to difficult scientific problems. In the present article, we illustrate a tractable, widely implementable structured process called RISE that accelerates the development of these missing skills. The RISE process (Route to Identifying, learning, and practicing interdisciplinary and transdisciplinary team Skills to address difficult Environmental problems) can be used by diverse teams as a tool for research, professional interactions, or training. RISE helps professionals with different expertise learn from each other by repeatedly asking team-developed questions that are tested using an interactive quantitative tool (e.g., agent-based models, machine learning, case studies) applied to a shared problem framework and data set. Outputs from the quantitative tool are then discussed and interpreted as a team, considering all team members’ perspectives, disciplines, and expertise. After this synthesis, RISE is repeated with new questions that the team jointly identified in earlier data interpretation discussions. As a result, individual perspectives, originally informed by disciplinary training, are complemented by a shared understanding of team function and elevated interdisciplinary knowledge.
期刊介绍:
BioScience is a monthly journal that has been in publication since 1964. It provides readers with authoritative and current overviews of biological research. The journal is peer-reviewed and heavily cited, making it a reliable source for researchers, educators, and students. In addition to research articles, BioScience also covers topics such as biology education, public policy, history, and the fundamental principles of the biological sciences. This makes the content accessible to a wide range of readers. The journal includes professionally written feature articles that explore the latest advancements in biology. It also features discussions on professional issues, book reviews, news about the American Institute of Biological Sciences (AIBS), and columns on policy (Washington Watch) and education (Eye on Education).