{"title":"The Prl3d1-Cre mouse line selectively induces the expression of Cre recombinase in parietal trophoblast giant cells","authors":"Linqing Pan, Fuquan Zhu, Aochen Yu, Yuan Jiang, Dayu Wang, Minglian Zhou, Chao Jia, Yugui Cui, Lisha Tang, Huaiyun Tang, Juan Li","doi":"10.1002/dvg.23585","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The placenta plays a pivotal role in the maintenance of normal pregnancy, but how it forms, matures, and performs its function remains poorly understood. Here, we describe a novel mouse line (Prl3d1-iCre) that expresses iCre recombinase under the control of the endogenous <i>prl3d1</i> promoter. Prl3d1 has been proposed as a marker for distinguishing trophoblast giant cells (TGCs) from other trophoblast cells in the placenta. The in vivo efficiency and specificity of the Cre line were analyzed by interbreeding Prl3d1-iCre mice with B6-G/R reporter mice. Through anatomical studies of the placenta and other tissues of Prl3d1-iCre/+; B6-G/R mouse mice, we found that the tdTomato signal was expressed in parietal trophoblast giant cells (P-TGCs). Thus, we report a mouse line with ectopic Cre expression in P-TGCs, which provides a valuable tool for studying human pathological pregnancies caused by implantation failure or abnormal trophoblast secretion due to aberrant gene regulation.</p>\n </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"62 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"genesis","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.23585","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The placenta plays a pivotal role in the maintenance of normal pregnancy, but how it forms, matures, and performs its function remains poorly understood. Here, we describe a novel mouse line (Prl3d1-iCre) that expresses iCre recombinase under the control of the endogenous prl3d1 promoter. Prl3d1 has been proposed as a marker for distinguishing trophoblast giant cells (TGCs) from other trophoblast cells in the placenta. The in vivo efficiency and specificity of the Cre line were analyzed by interbreeding Prl3d1-iCre mice with B6-G/R reporter mice. Through anatomical studies of the placenta and other tissues of Prl3d1-iCre/+; B6-G/R mouse mice, we found that the tdTomato signal was expressed in parietal trophoblast giant cells (P-TGCs). Thus, we report a mouse line with ectopic Cre expression in P-TGCs, which provides a valuable tool for studying human pathological pregnancies caused by implantation failure or abnormal trophoblast secretion due to aberrant gene regulation.
期刊介绍:
As of January 2000, Developmental Genetics was renamed and relaunched as genesis: The Journal of Genetics and Development, with a new scope and Editorial Board. The journal focuses on work that addresses the genetics of development and the fundamental mechanisms of embryological processes in animals and plants. With increased awareness of the interplay between genetics and evolutionary change, particularly during developmental processes, we encourage submission of manuscripts from all ecological niches. The expanded numbers of genomes for which sequencing is being completed will facilitate genetic and genomic examination of developmental issues, even if the model system does not fit the “classical genetic” mold. Therefore, we encourage submission of manuscripts from all species. Other areas of particular interest include: 1) the roles of epigenetics, microRNAs and environment on developmental processes; 2) genome-wide studies; 3) novel imaging techniques for the study of gene expression and cellular function; 4) comparative genetics and genomics and 5) animal models of human genetic and developmental disorders.
genesis presents reviews, full research articles, short research letters, and state-of-the-art technology reports that promote an understanding of the function of genes and the roles they play in complex developmental processes.