Electrochemical trends of a hybrid platinum and metal–nitrogen–carbon catalyst library for the oxygen reduction reaction†

EES catalysis Pub Date : 2023-12-21 DOI:10.1039/D3EY00235G
Alvin Ly, Eamonn Murphy, Hanson Wang, Ying Huang, Giovanni Ferro, Shengyuan Guo, Tristan Asset, Yuanchao Liu, Iryna V. Zenyuk and Plamen Atanassov
{"title":"Electrochemical trends of a hybrid platinum and metal–nitrogen–carbon catalyst library for the oxygen reduction reaction†","authors":"Alvin Ly, Eamonn Murphy, Hanson Wang, Ying Huang, Giovanni Ferro, Shengyuan Guo, Tristan Asset, Yuanchao Liu, Iryna V. Zenyuk and Plamen Atanassov","doi":"10.1039/D3EY00235G","DOIUrl":null,"url":null,"abstract":"<p >Enhancing the activity and durability of Pt nanoparticles for the oxygen reduction reaction (ORR) is of critical importance in achieving an optimal, cost-efficient proton exchange membrane fuel cell (PEMFC) catalyst. Aimed at improving the intrinsic catalytic activity and durability of the Pt nanoparticles, this work utilizes a library of fourteen 3d, 4d, 5d, and <em>f</em> metal atomically dispersed metal–nitrogen–carbon (M–N–C) catalysts as active supports, synthesizing a corresponding library of Pt/M–N–C catalysts. XPS and XANES measurements indicate a reduced oxidation state of the Pt nanoparticles due to interactions with the M–N–C support. Further alteration of the electronic structure of the Pt nanoparticles arising from interactions with the M–N<small><sub><em>x</em></sub></small> sites is evidenced through the CO oxidation peak, which experiences broadening, shoulder formation and peak shifting over varying M–N–C supports. ORR performance reveals the significantly enhanced intrinsic catalytic activity of the Pt nanoparticles on M–N–Cs over a Pt/C standard, through specific activity calculations. This work demonstrates the application of highly active hybrid Pt/M–N–C catalysts, showcasing the variation in activity as one traverses the periodic table, while highlighting important design criteria to achieve highly active and durable ORR catalysts.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d3ey00235g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d3ey00235g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the activity and durability of Pt nanoparticles for the oxygen reduction reaction (ORR) is of critical importance in achieving an optimal, cost-efficient proton exchange membrane fuel cell (PEMFC) catalyst. Aimed at improving the intrinsic catalytic activity and durability of the Pt nanoparticles, this work utilizes a library of fourteen 3d, 4d, 5d, and f metal atomically dispersed metal–nitrogen–carbon (M–N–C) catalysts as active supports, synthesizing a corresponding library of Pt/M–N–C catalysts. XPS and XANES measurements indicate a reduced oxidation state of the Pt nanoparticles due to interactions with the M–N–C support. Further alteration of the electronic structure of the Pt nanoparticles arising from interactions with the M–Nx sites is evidenced through the CO oxidation peak, which experiences broadening, shoulder formation and peak shifting over varying M–N–C supports. ORR performance reveals the significantly enhanced intrinsic catalytic activity of the Pt nanoparticles on M–N–Cs over a Pt/C standard, through specific activity calculations. This work demonstrates the application of highly active hybrid Pt/M–N–C catalysts, showcasing the variation in activity as one traverses the periodic table, while highlighting important design criteria to achieve highly active and durable ORR catalysts.

Abstract Image

用于氧还原反应的铂和金属-氮-碳混合催化剂库的电化学发展趋势
提高铂纳米颗粒在氧还原反应(ORR)中的活性和耐久性,对于获得最佳、经济高效的质子交换膜燃料电池(PEMFC)催化剂至关重要。为了提高铂纳米颗粒的内在催化活性和耐久性,本研究利用 14 种 3d、4d、5d 和 f 金属原子分散的金属-氮-碳(M-N-C)催化剂作为活性支撑,合成了相应的铂/M-N-C 催化剂库。XPS 和 XANES 测量结果表明,由于与 M-N-C 载体的相互作用,铂纳米粒子的氧化态降低。与 M-Nx 位点的相互作用进一步改变了铂纳米颗粒的电子结构,这一点通过 CO 氧化峰得到了证明。ORR 性能显示,通过比活度计算,M-N-Cs 上的铂纳米颗粒的内在催化活性明显高于 Pt/C 标准。这项工作展示了高活性混合铂/M-N-C 催化剂的应用,展示了随着元素周期表的变化而产生的活性变化,同时强调了实现高活性和持久 ORR 催化剂的重要设计标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信