Adaptive Distributed Fixed-Time Cooperative Three-Dimensional Guidance Law for Multimissiles against Manoeuvring Target

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE
Jiwei Gao, Xiaojing Li, Shaofei Zang, Jianwei Ma, Jinpeng Zhang
{"title":"Adaptive Distributed Fixed-Time Cooperative Three-Dimensional Guidance Law for Multimissiles against Manoeuvring Target","authors":"Jiwei Gao, Xiaojing Li, Shaofei Zang, Jianwei Ma, Jinpeng Zhang","doi":"10.1155/2023/4692840","DOIUrl":null,"url":null,"abstract":"The problem of cooperative interception of the manoeuvring target is investigated in this paper. Firstly, in light of fast fixed-time consensus theory, time-to-go, and undirected topologies, adaptive cooperative guidance along the line-of-sight (LOS) direction is proposed to guarantee impact time synchronization. Next, novel nonsingular terminal sliding mode (NTSM) is designed to establish adaptive fixed-time guidance law for steering LOS angular rates to the origin or its small neighbourhood. Without the knowledge of target manoeuvre, the proposed cooperative guidance law can be provided by lateral and longitudinal accelerations of each missile, while more reasonable and rigorous analysis of fixed-time stability is carried out through the Lyapunov theory. Within the specified time, both control tasks of simultaneous attack and the desired impact angles can be completed before the final time of the guidance process. Finally, numerical simulations demonstrate the feasibility and effectiveness of the proposed scheme.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/4692840","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of cooperative interception of the manoeuvring target is investigated in this paper. Firstly, in light of fast fixed-time consensus theory, time-to-go, and undirected topologies, adaptive cooperative guidance along the line-of-sight (LOS) direction is proposed to guarantee impact time synchronization. Next, novel nonsingular terminal sliding mode (NTSM) is designed to establish adaptive fixed-time guidance law for steering LOS angular rates to the origin or its small neighbourhood. Without the knowledge of target manoeuvre, the proposed cooperative guidance law can be provided by lateral and longitudinal accelerations of each missile, while more reasonable and rigorous analysis of fixed-time stability is carried out through the Lyapunov theory. Within the specified time, both control tasks of simultaneous attack and the desired impact angles can be completed before the final time of the guidance process. Finally, numerical simulations demonstrate the feasibility and effectiveness of the proposed scheme.
针对机动目标的多导弹自适应分布式固定时间合作三维制导法
本文研究了协同拦截机动目标的问题。首先,根据快速定时共识理论、时间到目标(time-to-go)和无向拓扑,提出了沿视线(LOS)方向的自适应协同制导,以保证撞击时间同步。接着,设计了新颖的非奇异终端滑动模式(NTSM),以建立自适应固定时间制导法,将 LOS 角速率引导至原点或其小邻域。在不知道目标机动的情况下,所提出的协同制导法则可由每枚导弹的横向和纵向加速度提供,同时通过李亚普诺夫理论对固定时间稳定性进行更合理、更严格的分析。在规定时间内,可在制导过程的最后时间之前完成同时攻击和所需撞击角这两项控制任务。最后,数值模拟证明了所提方案的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信