{"title":"Deformation mechanisms in high entropy alloys: a minireview of short-range order effects","authors":"Novin Rasooli, Wei Chen and Matthew Daly","doi":"10.1039/D3NR05251F","DOIUrl":null,"url":null,"abstract":"<p >The complex atomic scale structure of high entropy alloys presents new opportunities to expand the deformation theories of mechanical metallurgy. In this regard, solute-defect interactions have emerged as critical piece in elucidating the operation of deformation mechanisms. While notable progress has been made in understanding solute-defect interactions for random solute arrangements, recent interest in high entropy alloys with short-range order adds a new layer of structural complexity for which a cohesive picture has yet to emerge. To this end, this minireview synthesizes the current understanding of short-range order effects on defect behavior through an examination of the key recent literature. This analysis centers on the nanoscale metallurgy of deformation mechanisms, with the order-induced changes to the relevant defect energy landscapes serving as a touchstone for discussion. The topics reviewed include dislocation-mediated strengthening, twinning and phase transformation-based mechanisms, and vacancy-mediated processes. This minireview concludes with remarks on current challenges and opportunities for future efforts.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 4","pages":" 1650-1663"},"PeriodicalIF":5.8000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d3nr05251f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The complex atomic scale structure of high entropy alloys presents new opportunities to expand the deformation theories of mechanical metallurgy. In this regard, solute-defect interactions have emerged as critical piece in elucidating the operation of deformation mechanisms. While notable progress has been made in understanding solute-defect interactions for random solute arrangements, recent interest in high entropy alloys with short-range order adds a new layer of structural complexity for which a cohesive picture has yet to emerge. To this end, this minireview synthesizes the current understanding of short-range order effects on defect behavior through an examination of the key recent literature. This analysis centers on the nanoscale metallurgy of deformation mechanisms, with the order-induced changes to the relevant defect energy landscapes serving as a touchstone for discussion. The topics reviewed include dislocation-mediated strengthening, twinning and phase transformation-based mechanisms, and vacancy-mediated processes. This minireview concludes with remarks on current challenges and opportunities for future efforts.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.