Biopolymer-based nanoparticles as promising candidate for inducing apoptosis in liver cancer cells

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mahsa Hoseinzadeh, Mohammad Javad Mokhtari, Farshid Kafilzadeh, Javad Mohammadnejad, Yaghoob Taheri
{"title":"Biopolymer-based nanoparticles as promising candidate for inducing apoptosis in liver cancer cells","authors":"Mahsa Hoseinzadeh,&nbsp;Mohammad Javad Mokhtari,&nbsp;Farshid Kafilzadeh,&nbsp;Javad Mohammadnejad,&nbsp;Yaghoob Taheri","doi":"10.1049/mna2.12183","DOIUrl":null,"url":null,"abstract":"<p>Liver cancer is one of the most common causes of death all around the globe. On the other hand, conventional modalities, such as chemotherapy and surgery, have not been effectively suppressed cancer incidence due to some deficiencies. As a result, a novel folic acid (FA)-decorated poly lactic-co-glycolic acid (PLGA)-Alginate (Alg) nanocarrier was efficiently developed for active doxorubicin (Dox) delivery to human HepG2 liver cancer cells. The in vitro assays, including cell viability assay (MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test), apoptosis, cell cycle arrest, and cellular uptake, were applied to evaluate the cancer cell growth suppression and apoptosis-inducing ability of the nanocarrier. More than 85% cytotoxicity was attained after 24 h of treatment with 400-nM concentration of FA-PLGA-Dox-Alg. More than 21% and 61% apoptosis were observed after 24 h of treatment with 100-nM concentrations of FA-PLGA-Dox-Alg in apoptosis and cell cycle arrest assays. The cellular uptake of the FA-PLGA-Alg nanocarrier was about 30% higher than that of the PLGA-Alg carrier which indicated the cancer cell targeting ability of the FA-PLGA-Alg sample. These results have indicated the potential capability of FA-PLGA-Dox-Alg in the inhibition of liver cancer cells.</p>","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/mna2.12183","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mna2.12183","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Liver cancer is one of the most common causes of death all around the globe. On the other hand, conventional modalities, such as chemotherapy and surgery, have not been effectively suppressed cancer incidence due to some deficiencies. As a result, a novel folic acid (FA)-decorated poly lactic-co-glycolic acid (PLGA)-Alginate (Alg) nanocarrier was efficiently developed for active doxorubicin (Dox) delivery to human HepG2 liver cancer cells. The in vitro assays, including cell viability assay (MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test), apoptosis, cell cycle arrest, and cellular uptake, were applied to evaluate the cancer cell growth suppression and apoptosis-inducing ability of the nanocarrier. More than 85% cytotoxicity was attained after 24 h of treatment with 400-nM concentration of FA-PLGA-Dox-Alg. More than 21% and 61% apoptosis were observed after 24 h of treatment with 100-nM concentrations of FA-PLGA-Dox-Alg in apoptosis and cell cycle arrest assays. The cellular uptake of the FA-PLGA-Alg nanocarrier was about 30% higher than that of the PLGA-Alg carrier which indicated the cancer cell targeting ability of the FA-PLGA-Alg sample. These results have indicated the potential capability of FA-PLGA-Dox-Alg in the inhibition of liver cancer cells.

Abstract Image

以生物聚合物为基础的纳米粒子有望诱导肝癌细胞凋亡
肝癌是全球最常见的死亡原因之一。另一方面,化疗和手术等传统方法由于存在一些缺陷,未能有效抑制癌症的发病率。因此,我们开发了一种新型叶酸(FA)装饰聚乳酸-聚乙二醇酸(PLGA)-海藻酸(Alg)纳米载体,可有效地将多柔比星(Dox)递送至人类 HepG2 肝癌细胞。该纳米载体具有抑制癌细胞生长和诱导细胞凋亡的能力,其体外检测方法包括细胞活力检测(3-(4,5-二甲基噻唑-2-基)-2,5-二苯基溴化四氮唑试验)、细胞凋亡、细胞周期停滞和细胞摄取。使用 400-nM 浓度的 FA-PLGA-Dox-Alg 处理 24 小时后,细胞毒性达到 85% 以上。用 100-nM 浓度的 FA-PLGA-Dox-Alg 处理 24 小时后,在细胞凋亡和细胞周期停滞试验中分别观察到 21% 和 61% 以上的细胞凋亡。FA-PLGA-Alg纳米载体的细胞吸收率比PLGA-Alg载体高出约30%,这表明FA-PLGA-Alg样品具有癌细胞靶向能力。这些结果表明了 FA-PLGA-Dox-Alg 在抑制肝癌细胞方面的潜在能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micro & Nano Letters
Micro & Nano Letters 工程技术-材料科学:综合
CiteScore
3.30
自引率
0.00%
发文量
58
审稿时长
2.8 months
期刊介绍: Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities. Scope Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities. Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications. Typical topics include: Micro and nanostructures for the device communities MEMS and NEMS Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data Synthesis and processing Micro and nano-photonics Molecular machines, circuits and self-assembly Organic and inorganic micro and nanostructures Micro and nano-fluidics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信