A Feasibility Study on Indoor Localization and Multiperson Tracking Using Sparsely Distributed Camera Network With Edge Computing

Hyeokhyen Kwon;Chaitra Hegde;Yashar Kiarashi;Venkata Siva Krishna Madala;Ratan Singh;ArjunSinh Nakum;Robert Tweedy;Leandro Miletto Tonetto;Craig M. Zimring;Matthew Doiron;Amy D. Rodriguez;Allan I. Levey;Gari D. Clifford
{"title":"A Feasibility Study on Indoor Localization and Multiperson Tracking Using Sparsely Distributed Camera Network With Edge Computing","authors":"Hyeokhyen Kwon;Chaitra Hegde;Yashar Kiarashi;Venkata Siva Krishna Madala;Ratan Singh;ArjunSinh Nakum;Robert Tweedy;Leandro Miletto Tonetto;Craig M. Zimring;Matthew Doiron;Amy D. Rodriguez;Allan I. Levey;Gari D. Clifford","doi":"10.1109/JISPIN.2023.3337189","DOIUrl":null,"url":null,"abstract":"Camera-based activity monitoring systems are becoming an attractive solution for smart building applications with the advances in computer vision and edge computing technologies. In this article, we present a feasibility study and systematic analysis of a camera-based indoor localization and multiperson tracking system implemented on edge computing devices within a large indoor space. To this end, we deployed an end-to-end edge computing pipeline that utilizes multiple cameras to achieve localization, body orientation estimation, and tracking of multiple individuals within a large therapeutic space spanning \n<inline-formula><tex-math>$\\text{1700}\\, \\text{m}^{2}$</tex-math></inline-formula>\n, all while maintaining a strong focus on preserving privacy. Our pipeline consists of 39 edge computing camera systems equipped with tensor processing units (TPUs) placed in the indoor space's ceiling. To ensure the privacy of individuals, a real-time multiperson pose estimation algorithm runs on the TPU of the computing camera system. This algorithm extracts poses and bounding boxes, which are utilized for indoor localization, body orientation estimation, and multiperson tracking. Our pipeline demonstrated an average localization error of 1.41 m, a multiple-object tracking accuracy score of 88.6%, and a mean absolute body orientation error of 29\n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\n. These results show that localization and tracking of individuals in a large indoor space is feasible even with the privacy constrains.","PeriodicalId":100621,"journal":{"name":"IEEE Journal of Indoor and Seamless Positioning and Navigation","volume":"1 ","pages":"187-198"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10329418","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Indoor and Seamless Positioning and Navigation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10329418/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Camera-based activity monitoring systems are becoming an attractive solution for smart building applications with the advances in computer vision and edge computing technologies. In this article, we present a feasibility study and systematic analysis of a camera-based indoor localization and multiperson tracking system implemented on edge computing devices within a large indoor space. To this end, we deployed an end-to-end edge computing pipeline that utilizes multiple cameras to achieve localization, body orientation estimation, and tracking of multiple individuals within a large therapeutic space spanning $\text{1700}\, \text{m}^{2}$ , all while maintaining a strong focus on preserving privacy. Our pipeline consists of 39 edge computing camera systems equipped with tensor processing units (TPUs) placed in the indoor space's ceiling. To ensure the privacy of individuals, a real-time multiperson pose estimation algorithm runs on the TPU of the computing camera system. This algorithm extracts poses and bounding boxes, which are utilized for indoor localization, body orientation estimation, and multiperson tracking. Our pipeline demonstrated an average localization error of 1.41 m, a multiple-object tracking accuracy score of 88.6%, and a mean absolute body orientation error of 29 $^{\circ }$ . These results show that localization and tracking of individuals in a large indoor space is feasible even with the privacy constrains.
利用边缘计算的稀疏分布摄像机网络进行室内定位和多人跟踪的可行性研究
随着计算机视觉和边缘计算技术的发展,基于摄像头的活动监控系统正成为智能建筑应用中一种极具吸引力的解决方案。在本文中,我们介绍了对基于摄像头的室内定位和多人跟踪系统的可行性研究和系统分析,该系统是在大型室内空间的边缘计算设备上实现的。为此,我们部署了一个端到端的边缘计算管道,该管道利用多个摄像头在一个跨度为$\text{1700}\, \text{m}^{2}$的大型治疗空间内实现多个人的定位、身体方位估计和跟踪,同时重点关注保护隐私。我们的管道由 39 个边缘计算摄像系统组成,这些系统配备了张量处理单元(TPU),放置在室内空间的天花板上。为确保个人隐私,在计算摄像系统的 TPU 上运行了实时多人姿态估计算法。该算法可提取姿势和边界框,用于室内定位、身体方向估计和多人跟踪。我们的管道显示,平均定位误差为 1.41 米,多目标跟踪准确率为 88.6%,平均绝对身体方向误差为 29$^{\circ}$。这些结果表明,即使存在隐私限制,在大型室内空间对个人进行定位和跟踪也是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信