Dipoles and defects caused by CO2 plasma improve carrier transport of silicon solar cells

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Shenglei Huang, Yuhao Yang, Junjun Li, Kai Jiang, Xiaodong Li, Yinuo Zhou, Zhenfei Li, Guangyuan Wang, Qiang Shi, Jianhua Shi, Junlin Du, Anjun Han, Jian Yu, Fanying Meng, Liping Zhang, Zhengxin Liu, Wenzhu Liu
{"title":"Dipoles and defects caused by CO2 plasma improve carrier transport of silicon solar cells","authors":"Shenglei Huang,&nbsp;Yuhao Yang,&nbsp;Junjun Li,&nbsp;Kai Jiang,&nbsp;Xiaodong Li,&nbsp;Yinuo Zhou,&nbsp;Zhenfei Li,&nbsp;Guangyuan Wang,&nbsp;Qiang Shi,&nbsp;Jianhua Shi,&nbsp;Junlin Du,&nbsp;Anjun Han,&nbsp;Jian Yu,&nbsp;Fanying Meng,&nbsp;Liping Zhang,&nbsp;Zhengxin Liu,&nbsp;Wenzhu Liu","doi":"10.1002/pip.3761","DOIUrl":null,"url":null,"abstract":"<p>Carrier-selective contact is a fundamental issue for solar cells. For silicon heterojunction (SHJ) solar cells, it is important to improve hole transport because of the low doping efficiency of boron in amorphous silicon and the barrier stemming from valence band offset. Here, we develop a carbon dioxide (CO<sub>2</sub>) plasma treatment (PT) process to form dipoles and defect states. We find a dipole moment caused by longitudinal distribution of H and O atoms. It improves hole transport and blocks electron transport and thus suppresses carrier recombination. In the meantime, the CO<sub>2</sub> PT process also results in defect states, which reduce passivation performance but improve hole hopping in the intrinsic amorphous layer. As a balance, an appropriate CO<sub>2</sub> PT process at the i/p interface increases fill factor and power conversion efficiency of SHJ solar cells. We emphasize, based on sufficient evidences, this work finds a distinct role of the CO<sub>2</sub> plasma in SHJ solar cells opposed to reported mechanisms.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 5","pages":"283-290"},"PeriodicalIF":8.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3761","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Carrier-selective contact is a fundamental issue for solar cells. For silicon heterojunction (SHJ) solar cells, it is important to improve hole transport because of the low doping efficiency of boron in amorphous silicon and the barrier stemming from valence band offset. Here, we develop a carbon dioxide (CO2) plasma treatment (PT) process to form dipoles and defect states. We find a dipole moment caused by longitudinal distribution of H and O atoms. It improves hole transport and blocks electron transport and thus suppresses carrier recombination. In the meantime, the CO2 PT process also results in defect states, which reduce passivation performance but improve hole hopping in the intrinsic amorphous layer. As a balance, an appropriate CO2 PT process at the i/p interface increases fill factor and power conversion efficiency of SHJ solar cells. We emphasize, based on sufficient evidences, this work finds a distinct role of the CO2 plasma in SHJ solar cells opposed to reported mechanisms.

Abstract Image

Abstract Image

二氧化碳等离子体造成的偶极子和缺陷改善了硅太阳能电池的载流子传输
载流子选择性接触是太阳能电池的一个基本问题。对于硅异质结(SHJ)太阳能电池来说,由于硼在非晶硅中的掺杂效率较低,且价带偏移会产生势垒,因此改善空穴传输非常重要。在此,我们开发了一种二氧化碳(CO2)等离子体处理(PT)工艺来形成偶极子和缺陷态。我们发现 H 原子和 O 原子的纵向分布会产生偶极矩。它改善了空穴传输,阻碍了电子传输,从而抑制了载流子重组。与此同时,CO2 PT 过程也会产生缺陷态,从而降低钝化性能,但改善本征非晶层中的空穴跳跃。作为一种平衡,在 i/p 界面采用适当的 CO2 PT 工艺可提高 SHJ 太阳能电池的填充因子和功率转换效率。我们强调,基于充分的证据,这项研究发现二氧化碳等离子体在 SHJ 太阳能电池中的作用与已报道的机制截然不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信