Percolation on irregular high-dimensional product graphs

Sahar Diskin, Joshua Erde, Mihyun Kang, Michael Krivelevich
{"title":"Percolation on irregular high-dimensional product graphs","authors":"Sahar Diskin, Joshua Erde, Mihyun Kang, Michael Krivelevich","doi":"10.1017/s0963548323000469","DOIUrl":null,"url":null,"abstract":"<p>We consider bond percolation on high-dimensional product graphs <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$G=\\square _{i=1}^tG^{(i)}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\square$</span></span></img></span></span> denotes the Cartesian product. We call the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$G^{(i)}$</span></span></img></span></span> the base graphs and the product graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> the host graph. Very recently, Lichev (<span>J. Graph Theory</span>, 99(4):651–670, 2022) showed that, under a mild requirement on the isoperimetric properties of the base graphs, the component structure of the percolated graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$G_p$</span></span></img></span></span> undergoes a phase transition when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$p$</span></span></img></span></span> is around <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\frac{1}{d}$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$d$</span></span></img></span></span> is the average degree of the host graph.</p><p>In the supercritical regime, we strengthen Lichev’s result by showing that the giant component is in fact unique, with all other components of order <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231219111306460-0188:S0963548323000469:S0963548323000469_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$o(|G|)$</span></span></img></span></span>, and determining the sharp asymptotic order of the giant. Furthermore, we answer two questions posed by Lichev (<span>J. Graph Theory</span>, 99(4):651–670, 2022): firstly, we provide a construction showing that the requirement of bounded degree is necessary for the likely emergence of a linear order component; secondly, we show that the isoperimetric requirement on the base graphs can be, in fact, super-exponentially small in the dimension. Finally, in the subcritical regime, we give an example showing that in the case of <span>irregular</span> high-dimensional product graphs, there can be a <span>polynomially</span> large component with high probability, very much unlike the quantitative behaviour seen in the Erdős-Rényi random graph and in the percolated hypercube, and in fact in any <span>regular</span> high-dimensional product graphs, as shown by the authors in a companion paper (Percolation on high-dimensional product graphs. <span>arXiv:2209.03722</span>, 2022).</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider bond percolation on high-dimensional product graphs Abstract Image$G=\square _{i=1}^tG^{(i)}$, where Abstract Image$\square$ denotes the Cartesian product. We call the Abstract Image$G^{(i)}$ the base graphs and the product graph Abstract Image$G$ the host graph. Very recently, Lichev (J. Graph Theory, 99(4):651–670, 2022) showed that, under a mild requirement on the isoperimetric properties of the base graphs, the component structure of the percolated graph Abstract Image$G_p$ undergoes a phase transition when Abstract Image$p$ is around Abstract Image$\frac{1}{d}$, where Abstract Image$d$ is the average degree of the host graph.

In the supercritical regime, we strengthen Lichev’s result by showing that the giant component is in fact unique, with all other components of order Abstract Image$o(|G|)$, and determining the sharp asymptotic order of the giant. Furthermore, we answer two questions posed by Lichev (J. Graph Theory, 99(4):651–670, 2022): firstly, we provide a construction showing that the requirement of bounded degree is necessary for the likely emergence of a linear order component; secondly, we show that the isoperimetric requirement on the base graphs can be, in fact, super-exponentially small in the dimension. Finally, in the subcritical regime, we give an example showing that in the case of irregular high-dimensional product graphs, there can be a polynomially large component with high probability, very much unlike the quantitative behaviour seen in the Erdős-Rényi random graph and in the percolated hypercube, and in fact in any regular high-dimensional product graphs, as shown by the authors in a companion paper (Percolation on high-dimensional product graphs. arXiv:2209.03722, 2022).

不规则高维积图上的循环
我们考虑高维积图 $G=\square _{i=1}^tG^{(i)}$ 上的键渗,其中 $\square$ 表示笛卡尔积。我们称 $G^{(i)}$ 为基图,称积图 $G$ 为主图。最近,Lichev(J. Graph Theory, 99(4):651-670, 2022)指出,在对基图的等周特性有温和要求的情况下,当 $p$ 约为 $\frac{1}{d}$(其中 $d$ 是主图的平均度数)时,渗滤图 $G_p$ 的分量结构会发生相变。在超临界体系中,我们证明了巨分量实际上是唯一的,所有其他分量的阶数都是 $o(|G|)$,并确定了巨分量的尖锐渐近阶数,从而加强了利切夫的结果。此外,我们还回答了利切夫提出的两个问题(《图论》,99(4):651-670, 2022 年):首先,我们提供了一个构造,表明有界度要求对于线性阶成分的可能出现是必要的;其次,我们证明了对基图的等度数要求实际上在维数上是超指数小的。最后,在次临界机制中,我们举例说明,在不规则高维积图的情况下,可以高概率地出现一个多项式大的分量,这与厄尔多斯-雷尼随机图和渗滤超立方体中的定量行为非常不同,事实上也与任何规则高维积图中的定量行为非常不同,作者在另一篇论文(Percolation on high-dimensional product graphs. arXiv:2209.03722, 2022)中也证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信