Tunable Photocatalytic Activity of CoFe Prussian Blue Analogue Modified SrTiO3 Core–Shell Structures for Solar-Driven Water Oxidation

IF 5.7 Q2 CHEMISTRY, PHYSICAL
Naeimeh Sadat Peighambardoust, Sina Sadigh Akbari, Rana Lomlu, Umut Aydemir* and Ferdi Karadas*, 
{"title":"Tunable Photocatalytic Activity of CoFe Prussian Blue Analogue Modified SrTiO3 Core–Shell Structures for Solar-Driven Water Oxidation","authors":"Naeimeh Sadat Peighambardoust,&nbsp;Sina Sadigh Akbari,&nbsp;Rana Lomlu,&nbsp;Umut Aydemir* and Ferdi Karadas*,&nbsp;","doi":"10.1021/acsmaterialsau.3c00090","DOIUrl":null,"url":null,"abstract":"<p >This study presents a pioneering semiconductor-catalyst core–shell architecture designed to enhance photocatalytic water oxidation activity significantly. This innovative assembly involves the in situ deposition of CoFe Prussian blue analogue (PBA) particles onto SrTiO<sub>3</sub> (STO) and blue SrTiO<sub>3</sub> (bSTO) nanocubes, effectively establishing a robust p–n junction, as demonstrated by Mott–Schottky analysis. Of notable significance, the STO/PB core–shell catalyst displayed remarkable photocatalytic performance, achieving an oxygen evolution rate of 129.6 μmol g<sup>–1</sup> h<sup>–1</sup>, with stability over an extended 9-h in the presence of S<sub>2</sub>O<sub>8</sub><sup>2–</sup> as an electron scavenger. Thorough characterization unequivocally verified the precise alignment of the band energies within the STO/PB core–shell assembly. Our research underscores the critical role of tailored semiconductor-catalyst interfaces in advancing the realm of photocatalysis and its broader applications in renewable energy technologies.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"4 2","pages":"214–223"},"PeriodicalIF":5.7000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.3c00090","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a pioneering semiconductor-catalyst core–shell architecture designed to enhance photocatalytic water oxidation activity significantly. This innovative assembly involves the in situ deposition of CoFe Prussian blue analogue (PBA) particles onto SrTiO3 (STO) and blue SrTiO3 (bSTO) nanocubes, effectively establishing a robust p–n junction, as demonstrated by Mott–Schottky analysis. Of notable significance, the STO/PB core–shell catalyst displayed remarkable photocatalytic performance, achieving an oxygen evolution rate of 129.6 μmol g–1 h–1, with stability over an extended 9-h in the presence of S2O82– as an electron scavenger. Thorough characterization unequivocally verified the precise alignment of the band energies within the STO/PB core–shell assembly. Our research underscores the critical role of tailored semiconductor-catalyst interfaces in advancing the realm of photocatalysis and its broader applications in renewable energy technologies.

Abstract Image

Abstract Image

用于太阳能驱动水氧化的 CoFe 普鲁士蓝类似物改性 SrTiO3 核壳结构的可调光催化活性
本研究提出了一种开创性的半导体催化剂核壳结构,旨在显著提高光催化水氧化活性。正如莫特-肖特基分析(Mott-Schottky analysis)所证明的那样,这种创新的组装方式是将 CoFe 普鲁士蓝类似物(PBA)颗粒原位沉积到氧化钛酸锶(STO)和氧化钛酸锶蓝(bSTO)纳米立方体上,从而有效地建立起一个坚固的 p-n 结。值得注意的是,STO/PB 核壳催化剂显示出卓越的光催化性能,氧气进化率达到 129.6 μmol g-1 h-1,在作为电子清除剂的 S2O82- 存在下,该催化剂在 9 小时内保持稳定。彻底的表征明确验证了 STO/PB 核壳组件内带能的精确排列。我们的研究强调了量身定制的半导体催化剂界面在推进光催化领域及其在可再生能源技术中更广泛应用方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信