{"title":"Exact Solutions Modelling Nonlinear Atmospheric Gravity Waves","authors":"David Henry","doi":"10.1007/s00021-023-00842-3","DOIUrl":null,"url":null,"abstract":"<div><p>Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial <i>f</i>-plane, and vertically propagating mountain waves at general latitudes.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-023-00842-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-023-00842-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Exact solutions to the governing equations for atmospheric motion are derived which model nonlinear gravity wave propagation superimposed on atmospheric currents. Solutions are explicitly prescribed in terms of a Lagrangian formulation, which enables a detailed exposition of intricate flow characteristics. It is shown that our solutions are well-suited to modelling two distinct forms of mountain waves, namely: trapped lee waves in the Equatorial f-plane, and vertically propagating mountain waves at general latitudes.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.