Maximilian M. Rabe , Dario Paape , Daniela Mertzen , Shravan Vasishth , Ralf Engbert
{"title":"SEAM: An integrated activation-coupled model of sentence processing and eye movements in reading","authors":"Maximilian M. Rabe , Dario Paape , Daniela Mertzen , Shravan Vasishth , Ralf Engbert","doi":"10.1016/j.jml.2023.104496","DOIUrl":null,"url":null,"abstract":"<div><p>Models of eye-movement control during reading, developed largely within psychology, usually focus on visual, attentional, lexical, and motor processes but neglect post-lexical language processing; by contrast, models of sentence comprehension processes, developed largely within psycholinguistics, generally focus only on post-lexical language processes. We present a model that combines these two research threads, by integrating eye-movement control and sentence processing. Developing such an integrated model is extremely challenging and computationally demanding, but such an integration is an important step toward complete mathematical models of natural language comprehension in reading. We combine the SWIFT model of eye-movement control (Seelig et al., 2023) with key components of the Lewis and Vasishth sentence processing model (Lewis and Vasishth, 2005). This integration becomes possible, for the first time, due in part to recent advances in successful parameter identification in dynamical models, which allows us to investigate profile log-likelihoods for individual model parameters. We present a fully implemented proof-of-concept model demonstrating how such an integrated model can be achieved; our approach includes Bayesian model inference with Markov Chain Monte Carlo (MCMC) sampling as a key computational tool. The integrated Sentence-Processing and Eye-Movement Activation-Coupled Model (SEAM) can successfully reproduce eye movement patterns that arise due to similarity-based interference in reading. To our knowledge, this is the first-ever integration of a complete process model of eye-movement control with linguistic dependency completion processes in sentence comprehension. In future work, this proof of concept model will need to be evaluated using a comprehensive set of benchmark data.</p></div>","PeriodicalId":16493,"journal":{"name":"Journal of memory and language","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0749596X23000955/pdfft?md5=e957b46c6324edb315808fc2e1ef2d43&pid=1-s2.0-S0749596X23000955-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of memory and language","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749596X23000955","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Models of eye-movement control during reading, developed largely within psychology, usually focus on visual, attentional, lexical, and motor processes but neglect post-lexical language processing; by contrast, models of sentence comprehension processes, developed largely within psycholinguistics, generally focus only on post-lexical language processes. We present a model that combines these two research threads, by integrating eye-movement control and sentence processing. Developing such an integrated model is extremely challenging and computationally demanding, but such an integration is an important step toward complete mathematical models of natural language comprehension in reading. We combine the SWIFT model of eye-movement control (Seelig et al., 2023) with key components of the Lewis and Vasishth sentence processing model (Lewis and Vasishth, 2005). This integration becomes possible, for the first time, due in part to recent advances in successful parameter identification in dynamical models, which allows us to investigate profile log-likelihoods for individual model parameters. We present a fully implemented proof-of-concept model demonstrating how such an integrated model can be achieved; our approach includes Bayesian model inference with Markov Chain Monte Carlo (MCMC) sampling as a key computational tool. The integrated Sentence-Processing and Eye-Movement Activation-Coupled Model (SEAM) can successfully reproduce eye movement patterns that arise due to similarity-based interference in reading. To our knowledge, this is the first-ever integration of a complete process model of eye-movement control with linguistic dependency completion processes in sentence comprehension. In future work, this proof of concept model will need to be evaluated using a comprehensive set of benchmark data.
期刊介绍:
Articles in the Journal of Memory and Language contribute to the formulation of scientific issues and theories in the areas of memory, language comprehension and production, and cognitive processes. Special emphasis is given to research articles that provide new theoretical insights based on a carefully laid empirical foundation. The journal generally favors articles that provide multiple experiments. In addition, significant theoretical papers without new experimental findings may be published.
The Journal of Memory and Language is a valuable tool for cognitive scientists, including psychologists, linguists, and others interested in memory and learning, language, reading, and speech.
Research Areas include:
• Topics that illuminate aspects of memory or language processing
• Linguistics
• Neuropsychology.