Jiaming Liu, Yang Xiao, Carlo Gualtieri, Saiyu Yuan, Qihao Jiang, Guangqiu Jin, Taotao Zhang, Jian Zhou
{"title":"Effect of bank slope and ambient groundwater discharge on hyporheic transport and biogeochemical reactions in a compound channel","authors":"Jiaming Liu, Yang Xiao, Carlo Gualtieri, Saiyu Yuan, Qihao Jiang, Guangqiu Jin, Taotao Zhang, Jian Zhou","doi":"10.1002/eco.2608","DOIUrl":null,"url":null,"abstract":"<p>As floodplains are inundated during floods in a compound channel, solutes in the surface water column reach the hyporheic zone and react with solutes upwelled from the groundwater. These biogeochemical reactive processes, such as aerobic respiration, nitrification, and denitrification, need more clarification. In this study, a 3D hydrodynamic model combined with a 2D groundwater and biogeochemical model was used to examine the influence of bank slope angle and ambient groundwater discharge on these processes. A denitrification zone was found under the interface between the main channel and the floodplain when the bank slope angle was 90°, while lower angles extended that zone horizontally. In addition, a lower bank angle decreased N entry into the streambed and enhanced nitrogen removal. A decrease in ambient groundwater had a negative impact on both aerobic respiration and denitrification. When the ambient groundwater discharge reached below −0.9 m/d, nitrification was dominant in the model domain, and the hyporheic zone turned into a NO<sub>3</sub><sup>−</sup> source. The greatest removal efficiency, equal to 0.8, was attained at a discharge rate of −0.5 m/d for ambient groundwater and a bank slope angle of 30°. The hyporheic zone should lose its ability to remove N when ambient groundwater discharges exceed 0.25 m/d and removal efficiency fluctuates by 0. In conclusion, our findings indicate that bank slope angle and ambient groundwater discharge have a substantial impact on solute transport and biogeochemical activities in the hyporheic zone of a compound channel.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2608","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As floodplains are inundated during floods in a compound channel, solutes in the surface water column reach the hyporheic zone and react with solutes upwelled from the groundwater. These biogeochemical reactive processes, such as aerobic respiration, nitrification, and denitrification, need more clarification. In this study, a 3D hydrodynamic model combined with a 2D groundwater and biogeochemical model was used to examine the influence of bank slope angle and ambient groundwater discharge on these processes. A denitrification zone was found under the interface between the main channel and the floodplain when the bank slope angle was 90°, while lower angles extended that zone horizontally. In addition, a lower bank angle decreased N entry into the streambed and enhanced nitrogen removal. A decrease in ambient groundwater had a negative impact on both aerobic respiration and denitrification. When the ambient groundwater discharge reached below −0.9 m/d, nitrification was dominant in the model domain, and the hyporheic zone turned into a NO3− source. The greatest removal efficiency, equal to 0.8, was attained at a discharge rate of −0.5 m/d for ambient groundwater and a bank slope angle of 30°. The hyporheic zone should lose its ability to remove N when ambient groundwater discharges exceed 0.25 m/d and removal efficiency fluctuates by 0. In conclusion, our findings indicate that bank slope angle and ambient groundwater discharge have a substantial impact on solute transport and biogeochemical activities in the hyporheic zone of a compound channel.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.