Supercharging green chemistry: Unleashing 1, 4-NADH regeneration and unprecedented C(sp3)-F bond activation via NiS-NiO/S-g-C3N4 nanocomposite photocatalyst under solar light
Sanjana Kumari, Atul P. Singh, Rajesh K. Yadav, Satyam Singh, Rehana Shahin, Indra Kumari, Aditya Nath Yadav, Abhishek K. Yadav, Kavita Sharma, Dilip K. Dwivedi, Hany W. Darwish, Jeong Ryeol Choi
{"title":"Supercharging green chemistry: Unleashing 1, 4-NADH regeneration and unprecedented C(sp3)-F bond activation via NiS-NiO/S-g-C3N4 nanocomposite photocatalyst under solar light","authors":"Sanjana Kumari, Atul P. Singh, Rajesh K. Yadav, Satyam Singh, Rehana Shahin, Indra Kumari, Aditya Nath Yadav, Abhishek K. Yadav, Kavita Sharma, Dilip K. Dwivedi, Hany W. Darwish, Jeong Ryeol Choi","doi":"10.1002/apj.3021","DOIUrl":null,"url":null,"abstract":"<p>Fluorinated and enzymatic chemicals are widely used in society due to their chemical, physical, and biological qualities. Nevertheless, despite their vital importance, present approaches to adding fluorine to molecules and regenerating enzyme cofactors have serious flaws. For instance, numerous approaches are photocatalytic and employ stoichiometric counterparts of heavy metals. Prevailing photocatalytic approaches, on the other hand, show very poor activity, and selectivity has not been attained by heterogeneous photocatalysis, despite the several benefits such a method would provide. Here, we show how heterogeneous photocatalysis may be used to selectively create C(sp<sup>3</sup>)-F bonds and 1,4-NADH regeneration cofactor. Employing NiS-NiO/S-g-C<sub>3</sub>N<sub>4</sub> nanocomposite photocatalyst as a photocatalyst, NAD<sup>+</sup> and Selectfluor as an acceptor and mild fluorine donor, effective 1,4-NADH regeneration, and decarboxylative fluorination of carboxylic acids can be attained in very short reaction times. Furthermore, NiS-NiO/S-g-C<sub>3</sub>N<sub>4</sub> nanocomposite photocatalyst exhibits outstanding levels of robustness and photo-catching capacity. These aspects, attached to the mild environment of the reaction scheme, exhibit a breakthrough toward the sustainable cofactor of 1,4-NADH regeneration and synthesis of fluorinated compounds.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorinated and enzymatic chemicals are widely used in society due to their chemical, physical, and biological qualities. Nevertheless, despite their vital importance, present approaches to adding fluorine to molecules and regenerating enzyme cofactors have serious flaws. For instance, numerous approaches are photocatalytic and employ stoichiometric counterparts of heavy metals. Prevailing photocatalytic approaches, on the other hand, show very poor activity, and selectivity has not been attained by heterogeneous photocatalysis, despite the several benefits such a method would provide. Here, we show how heterogeneous photocatalysis may be used to selectively create C(sp3)-F bonds and 1,4-NADH regeneration cofactor. Employing NiS-NiO/S-g-C3N4 nanocomposite photocatalyst as a photocatalyst, NAD+ and Selectfluor as an acceptor and mild fluorine donor, effective 1,4-NADH regeneration, and decarboxylative fluorination of carboxylic acids can be attained in very short reaction times. Furthermore, NiS-NiO/S-g-C3N4 nanocomposite photocatalyst exhibits outstanding levels of robustness and photo-catching capacity. These aspects, attached to the mild environment of the reaction scheme, exhibit a breakthrough toward the sustainable cofactor of 1,4-NADH regeneration and synthesis of fluorinated compounds.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).