{"title":"Tuning the distribution of carbon nanotubes in styrene–acrylonitrile copolymer by a small amount of polycarbonate","authors":"Junmin Lee, Hyungsu Kim","doi":"10.1007/s13233-023-00229-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we added a small amount of polycarbonate (PC), ranging from 1 to 9 wt%, to the composites of styrene–acrylonitrile copolymer (SAN) and multiwalled carbon nanotube (MWNT). When two types of SANs having 24 and 32 wt% AN (SAN24 and SAN32) were used, we found that the resistivity of the SAN/MWNT (0.5 wt%) composites significantly decreased with the addition of 1–3% of PC, and the effect was more pronounced in the case of SAN32. Transmission electron microscopy (TEM) images revealed that MWNTs, which were uniformly distributed on the pure SAN, tended to agglomerate and form an interconnected structure when an appropriate amount of PC was added. The reduced resistivity of the composites is mainly attributed to the connectivity of MWNTs facilitating electron transport. It is worth noting that the network structure disappears when the amount of PC exceeds 5 wt%, where the size of PC domains grows, and most of the MWNTs are entrapped in the PC phase, resulting in an increased resistivity of the composite. The rheological investigation of the composites revealed that the storage moduli of the composites were sensitive to the state of MWNT distribution, which was greatly altered by the type of SAN and the amount of PC.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div><div><p>Alteration of carbon nanotubes distribution in styrene–acrylonitrile due to the introduction of polycarbonate</p></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"32 4","pages":"349 - 358"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-023-00229-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we added a small amount of polycarbonate (PC), ranging from 1 to 9 wt%, to the composites of styrene–acrylonitrile copolymer (SAN) and multiwalled carbon nanotube (MWNT). When two types of SANs having 24 and 32 wt% AN (SAN24 and SAN32) were used, we found that the resistivity of the SAN/MWNT (0.5 wt%) composites significantly decreased with the addition of 1–3% of PC, and the effect was more pronounced in the case of SAN32. Transmission electron microscopy (TEM) images revealed that MWNTs, which were uniformly distributed on the pure SAN, tended to agglomerate and form an interconnected structure when an appropriate amount of PC was added. The reduced resistivity of the composites is mainly attributed to the connectivity of MWNTs facilitating electron transport. It is worth noting that the network structure disappears when the amount of PC exceeds 5 wt%, where the size of PC domains grows, and most of the MWNTs are entrapped in the PC phase, resulting in an increased resistivity of the composite. The rheological investigation of the composites revealed that the storage moduli of the composites were sensitive to the state of MWNT distribution, which was greatly altered by the type of SAN and the amount of PC.
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.