{"title":"Multiple Oligo assisted RNA Pulldown via Hybridization followed by Mass Spectrometry (MORPH-MS) for exploring the RNA-Protein interactions.","authors":"Priyanka Pant, Regalla Kumarswamy","doi":"10.1080/15476286.2023.2287302","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding RNA-protein interactions is crucial for deciphering the cellular functions and molecular mechanisms of regulatory RNAs. Consequently, there is a constant need to develop innovative and cost-effective methods to uncover such interactions. We developed a simple and cost-effective technique called Multiple Oligo assisted RNA Pulldown via Hybridization (MORPH) to identify proteins interacting with a specific RNA. MORPH employs a tiling array of antisense oligos (ASOs) to efficiently capture the RNA of interest along with proteins associated with it. Unlike existing techniques that rely on multiple individually biotinylated oligos spanning the entire RNA length, MORPH stands out by utilizing a single biotinylated oligo to capture all the ASOs. To evaluate MORPH's efficacy, we applied this technique combined with mass spectrometry to identify proteins interacting with lncRNA NEAT1, which has previously been studied using various methods. Our results demonstrate that despite being a simple and inexpensive procedure, MORPH performs on par with existing methods.<b>Abbreviations</b>: ASO, Antisense oligo; lncRNA, long non-coding RNA; MORPH, Multiple Oligo assisted RNA Pulldown via Hybridization.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2023.2287302","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding RNA-protein interactions is crucial for deciphering the cellular functions and molecular mechanisms of regulatory RNAs. Consequently, there is a constant need to develop innovative and cost-effective methods to uncover such interactions. We developed a simple and cost-effective technique called Multiple Oligo assisted RNA Pulldown via Hybridization (MORPH) to identify proteins interacting with a specific RNA. MORPH employs a tiling array of antisense oligos (ASOs) to efficiently capture the RNA of interest along with proteins associated with it. Unlike existing techniques that rely on multiple individually biotinylated oligos spanning the entire RNA length, MORPH stands out by utilizing a single biotinylated oligo to capture all the ASOs. To evaluate MORPH's efficacy, we applied this technique combined with mass spectrometry to identify proteins interacting with lncRNA NEAT1, which has previously been studied using various methods. Our results demonstrate that despite being a simple and inexpensive procedure, MORPH performs on par with existing methods.Abbreviations: ASO, Antisense oligo; lncRNA, long non-coding RNA; MORPH, Multiple Oligo assisted RNA Pulldown via Hybridization.
期刊介绍:
RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research.
RNA Biology brings together a multidisciplinary community of scientists working in the areas of:
Transcription and splicing
Post-transcriptional regulation of gene expression
Non-coding RNAs
RNA localization
Translation and catalysis by RNA
Structural biology
Bioinformatics
RNA in disease and therapy