{"title":"Analysis of temperature effects on the protein accumulation of the FT-FD module using newly generated Arabidopsis transgenic plants.","authors":"Kyung-Ho Park, Sol-Bi Kim, Jae-Hoon Jung","doi":"10.1002/pld3.552","DOIUrl":null,"url":null,"abstract":"<p><p>Arabidopsis flowering is dependent on interactions between a component of the florigens FLOWERING LOCUS T (FT) and the basic leucine zipper (bZIP) transcription factor FD. These proteins form a complex that activates the genes required for flowering competence and integrates environmental cues, such as photoperiod and temperature. However, it remains largely unknown how FT and FD are regulated at the protein level. To address this, we created <i>FT</i> transgenic plants that express the N-terminal FLAG-tagged FT fusion protein under the control of its own promoter in <i>ft</i> mutant backgrounds. <i>FT</i> transgenic plants complemented the delayed flowering of the <i>ft</i> mutant and exhibited similar <i>FT</i> expression patterns to wild-type Col-0 plants in response to changes in photoperiod and temperature. Similarly, we generated <i>FD</i> transgenic plants in <i>fd</i> mutant backgrounds that express the N-terminal MYC-tagged FD fusion protein under the <i>FD</i> promoter, rescuing the late flowering phenotypes in the <i>fd</i> mutant. Using these transgenic plants, we investigated how temperature regulates the expression of FT and FD proteins. Temperature-dependent changes in FT and FD protein levels are primarily regulated at the transcript level, but protein-level temperature effects have also been observed to some extent. In addition, our examination of the expression patterns of FT and FD in different tissues revealed that similar to the spatial expression pattern of <i>FT</i>, <i>FD</i> mRNA was expressed in both the leaf and shoot apex, but FD protein was only detected in the apex, suggesting a regulatory mechanism that restricts FD protein expression in the leaf during the vegetative growth phase. These transgenic plants provided a valuable platform for investigating the role of the FT-FD module in flowering time regulation.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"7 12","pages":"e552"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10727963/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.552","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Arabidopsis flowering is dependent on interactions between a component of the florigens FLOWERING LOCUS T (FT) and the basic leucine zipper (bZIP) transcription factor FD. These proteins form a complex that activates the genes required for flowering competence and integrates environmental cues, such as photoperiod and temperature. However, it remains largely unknown how FT and FD are regulated at the protein level. To address this, we created FT transgenic plants that express the N-terminal FLAG-tagged FT fusion protein under the control of its own promoter in ft mutant backgrounds. FT transgenic plants complemented the delayed flowering of the ft mutant and exhibited similar FT expression patterns to wild-type Col-0 plants in response to changes in photoperiod and temperature. Similarly, we generated FD transgenic plants in fd mutant backgrounds that express the N-terminal MYC-tagged FD fusion protein under the FD promoter, rescuing the late flowering phenotypes in the fd mutant. Using these transgenic plants, we investigated how temperature regulates the expression of FT and FD proteins. Temperature-dependent changes in FT and FD protein levels are primarily regulated at the transcript level, but protein-level temperature effects have also been observed to some extent. In addition, our examination of the expression patterns of FT and FD in different tissues revealed that similar to the spatial expression pattern of FT, FD mRNA was expressed in both the leaf and shoot apex, but FD protein was only detected in the apex, suggesting a regulatory mechanism that restricts FD protein expression in the leaf during the vegetative growth phase. These transgenic plants provided a valuable platform for investigating the role of the FT-FD module in flowering time regulation.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.