Data-driven inverse design of mode-locked fiber lasers.

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2023-12-04 DOI:10.1364/OE.503958
Zhiwei Fang, Guoqing Pu, Yongxin Xu, Weisheng Hu, Lilin Yi
{"title":"Data-driven inverse design of mode-locked fiber lasers.","authors":"Zhiwei Fang, Guoqing Pu, Yongxin Xu, Weisheng Hu, Lilin Yi","doi":"10.1364/OE.503958","DOIUrl":null,"url":null,"abstract":"<p><p>The diverse applications of mode-locked fiber lasers (MLFLs) raise various demands on the output of the laser, including the pulse duration, energy, and shape. Simulation is an excellent method to guide the design and construction of an MLFL for on-demand laser output. Traditional simulation of an MLFL uses the split-step Fourier method (SSFM) to solve the nonlinear Schrödinger (NLS) equation, which suffers from high computational complexity. As a result, the inverse design of MLFLs via the traditional SSFM-based simulation method relies on the design experience. Here, a completely data-driven approach for the inverse design of MLFLs is proposed, which significantly reduces the computational complexity and achieves a fast automatic inverse design of MLFLs. We utilize a recurrent neural network to realize fast and accurate MLFL modeling, then the desired cavity settings meeting the output demands are searched via a deep-reinforcement learning algorithm. The results prove that the data-driven method enables the accurate inverse design of an MLFL to produce a preset target femtosecond pulse with a certain duration and pulse energy. In addition, the cavity settings generating soliton molecules with different target separations can also be located via the data-driven inverse design. With the GPU acceleration, the time consumption of the data-driven inverse design of an MLFL is less than 1.3 hours. The proposed data-driven approach is applicable to guide the inverse design of an MLFL to meet the different demands of various applications.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"31 25","pages":"41794-41803"},"PeriodicalIF":3.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.503958","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The diverse applications of mode-locked fiber lasers (MLFLs) raise various demands on the output of the laser, including the pulse duration, energy, and shape. Simulation is an excellent method to guide the design and construction of an MLFL for on-demand laser output. Traditional simulation of an MLFL uses the split-step Fourier method (SSFM) to solve the nonlinear Schrödinger (NLS) equation, which suffers from high computational complexity. As a result, the inverse design of MLFLs via the traditional SSFM-based simulation method relies on the design experience. Here, a completely data-driven approach for the inverse design of MLFLs is proposed, which significantly reduces the computational complexity and achieves a fast automatic inverse design of MLFLs. We utilize a recurrent neural network to realize fast and accurate MLFL modeling, then the desired cavity settings meeting the output demands are searched via a deep-reinforcement learning algorithm. The results prove that the data-driven method enables the accurate inverse design of an MLFL to produce a preset target femtosecond pulse with a certain duration and pulse energy. In addition, the cavity settings generating soliton molecules with different target separations can also be located via the data-driven inverse design. With the GPU acceleration, the time consumption of the data-driven inverse design of an MLFL is less than 1.3 hours. The proposed data-driven approach is applicable to guide the inverse design of an MLFL to meet the different demands of various applications.

模式锁定光纤激光器的数据驱动反向设计。
锁模光纤激光器(MLFL)的应用多种多样,对激光器的输出提出了各种要求,包括脉冲持续时间、能量和形状。仿真是指导按需激光输出的 MLFL 的设计和构造的绝佳方法。传统的 MLFL 仿真采用分步傅里叶法(SSFM)来求解非线性薛定谔方程(NLS),计算复杂度较高。因此,通过传统的基于 SSFM 的仿真方法进行 MLFL 的逆向设计需要依赖设计经验。本文提出了一种完全由数据驱动的 MLFL 反设计方法,它大大降低了计算复杂度,实现了 MLFL 的快速自动反设计。我们利用递归神经网络实现快速准确的 MLFL 建模,然后通过深度强化学习算法搜索满足输出需求的理想腔体设置。结果证明,这种数据驱动方法能准确反向设计 MLFL,以产生具有一定持续时间和脉冲能量的预设目标飞秒脉冲。此外,通过数据驱动的反设计,还可以定位产生不同目标分离的孤子分子的腔体设置。在 GPU 的加速下,数据驱动的 MLFL 反设计耗时小于 1.3 小时。所提出的数据驱动方法适用于指导 MLFL 的反设计,以满足各种应用的不同需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信