Mitochondrial replication's role in vertebrate mtDNA strand asymmetry.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Open Biology Pub Date : 2023-12-01 Epub Date: 2023-12-20 DOI:10.1098/rsob.230181
André Gomes-Dos-Santos, Nair Vilas-Arrondo, André M Machado, Esther Román-Marcote, Jose Luís Del Río Iglesias, Francisco Baldó, Montse Pérez, Miguel M Fonseca, L Filipe C Castro, Elsa Froufe
{"title":"Mitochondrial replication's role in vertebrate mtDNA strand asymmetry.","authors":"André Gomes-Dos-Santos, Nair Vilas-Arrondo, André M Machado, Esther Román-Marcote, Jose Luís Del Río Iglesias, Francisco Baldó, Montse Pérez, Miguel M Fonseca, L Filipe C Castro, Elsa Froufe","doi":"10.1098/rsob.230181","DOIUrl":null,"url":null,"abstract":"<p><p>Mitogenomes are defined as compact and structurally stable over aeons. This perception results from a vertebrate-centric vision, where few types of mtDNA rearrangements are described. Here, we bring a new light to the involvement of mitochondrial replication in the strand asymmetry of the vertebrate mtDNA. Using several species of deep-sea hatchetfish (Sternoptychidae) displaying distinct mtDNA structural arrangements, we unravel the inversion of the coding direction of protein-coding genes (PCGs). This unexpected change is coupled with a strand asymmetry nucleotide composition reversal and is shown to be directly related to the strand location of the Control Region (CR). An analysis of the fourfold redundant sites of the PCGs (greater than 6000 vertebrates), revealed the rarity of this phenomenon, found in nine fish species (five deep-sea hatchetfish). Curiously, in Antarctic notothenioid fishes (Trematominae), where a single PCG inversion (the only other record in fish) is coupled with the inversion of the CR, the standard asymmetry is disrupted for the remaining PCGs but not yet reversed, suggesting a transitory state. Our results hint that a relaxation of the classic vertebrate mitochondrial structural <i>stasis</i> promotes disruption of the natural balance of asymmetry of the mtDNA. These findings support the long-lasting hypothesis that replication is the main molecular mechanism promoting the strand-specific compositional bias of this unique and indispensable molecule.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730292/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.230181","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitogenomes are defined as compact and structurally stable over aeons. This perception results from a vertebrate-centric vision, where few types of mtDNA rearrangements are described. Here, we bring a new light to the involvement of mitochondrial replication in the strand asymmetry of the vertebrate mtDNA. Using several species of deep-sea hatchetfish (Sternoptychidae) displaying distinct mtDNA structural arrangements, we unravel the inversion of the coding direction of protein-coding genes (PCGs). This unexpected change is coupled with a strand asymmetry nucleotide composition reversal and is shown to be directly related to the strand location of the Control Region (CR). An analysis of the fourfold redundant sites of the PCGs (greater than 6000 vertebrates), revealed the rarity of this phenomenon, found in nine fish species (five deep-sea hatchetfish). Curiously, in Antarctic notothenioid fishes (Trematominae), where a single PCG inversion (the only other record in fish) is coupled with the inversion of the CR, the standard asymmetry is disrupted for the remaining PCGs but not yet reversed, suggesting a transitory state. Our results hint that a relaxation of the classic vertebrate mitochondrial structural stasis promotes disruption of the natural balance of asymmetry of the mtDNA. These findings support the long-lasting hypothesis that replication is the main molecular mechanism promoting the strand-specific compositional bias of this unique and indispensable molecule.

线粒体复制在脊椎动物 mtDNA 链不对称中的作用。
有丝分裂基因组被定义为结构紧凑、结构稳定、历经漫长岁月的基因组。这种看法源于以脊椎动物为中心的视角,其中描述的 mtDNA 重排类型很少。在这里,我们为线粒体复制参与脊椎动物 mtDNA 链不对称带来了新的启示。我们利用几种表现出不同 mtDNA 结构排列的深海箭鱼(Sternoptychidae),揭示了蛋白质编码基因(PCGs)编码方向的反转。这一意想不到的变化与链不对称核苷酸组成反转有关,并被证明与控制区(CR)的链位置直接相关。对 PCGs 的四倍冗余位点(超过 6000 种脊椎动物)的分析表明,这种现象在九种鱼类(五种深海棘鱼)中非常罕见。奇怪的是,在南极蝾螈科鱼类(Trematominae)中,单个 PCG 反转(鱼类中唯一的其他记录)与 CR 反转同时发生,标准不对称在剩余 PCG 中被破坏,但尚未逆转,这表明这是一种过渡状态。我们的研究结果表明,脊椎动物线粒体经典结构停滞的松弛会破坏 mtDNA 不对称的自然平衡。这些发现支持了一个由来已久的假设,即复制是促进这一独特且不可或缺的分子链特异性组成偏向的主要分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Biology
Open Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.00
自引率
1.70%
发文量
136
审稿时长
6-12 weeks
期刊介绍: Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信