{"title":"Bioanalytical Method Development and Validation of Doxorubicin and Lapatinib in Rat Plasma Using UHPLC-HESI-LTQ-MS.","authors":"Shaik Khaja Moinuddin, Pirangi Srikanth, Parul Sharma, Sukhendu Nandi","doi":"10.1093/chromsci/bmad090","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is considered a silent killer. The complexity of cancer makes it earn that title. So far there are only a few approaches to treat cancer. Among them, chemotherapy is considered the best approach. Many chemotherapeutical compounds are commercially available in the market. Among them, doxorubicin (DOX) and lapatinib (LAP) are considered blockbuster molecules. However, DOX suffers from poor bioavailability and exhibits cardiotoxicity. Interestingly, a fixed dose combination of DOX and LAP significantly decreases the cardiotoxic effect of DOX. To enhance the oral bioavailability of DOX and to avail the synergistic effect of LAP, many formulations have been made. To quantify both compounds in any formulation or biological matrix, an Liquid chromatography-Mass Spectrometry (LC-MS) method is required. In this present study, a simple and rapid Ultra High-Performance Liquid Chromatography - Heated Electron Spray Ionization - Mass Spectrometry (UHPLC-HESI-MS) bioanalytical method was developed. The developed method was validated as per the regulatory guidelines. The validated bioanalytical method had a lower limit of quantification of 0.75 ng. A simple protein precipitation technique was optimized to extract the compounds from the rat plasma. All the validation parameters were found to be within the limits as per the regulatory guidelines. A novel and rapid analytical method was successfully developed and validated. This developed method can be used to quantify the DOX and LAP in any formulation and biological matrix.</p>","PeriodicalId":15430,"journal":{"name":"Journal of chromatographic science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chromatographic science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmad090","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer is considered a silent killer. The complexity of cancer makes it earn that title. So far there are only a few approaches to treat cancer. Among them, chemotherapy is considered the best approach. Many chemotherapeutical compounds are commercially available in the market. Among them, doxorubicin (DOX) and lapatinib (LAP) are considered blockbuster molecules. However, DOX suffers from poor bioavailability and exhibits cardiotoxicity. Interestingly, a fixed dose combination of DOX and LAP significantly decreases the cardiotoxic effect of DOX. To enhance the oral bioavailability of DOX and to avail the synergistic effect of LAP, many formulations have been made. To quantify both compounds in any formulation or biological matrix, an Liquid chromatography-Mass Spectrometry (LC-MS) method is required. In this present study, a simple and rapid Ultra High-Performance Liquid Chromatography - Heated Electron Spray Ionization - Mass Spectrometry (UHPLC-HESI-MS) bioanalytical method was developed. The developed method was validated as per the regulatory guidelines. The validated bioanalytical method had a lower limit of quantification of 0.75 ng. A simple protein precipitation technique was optimized to extract the compounds from the rat plasma. All the validation parameters were found to be within the limits as per the regulatory guidelines. A novel and rapid analytical method was successfully developed and validated. This developed method can be used to quantify the DOX and LAP in any formulation and biological matrix.
期刊介绍:
The Journal of Chromatographic Science is devoted to the dissemination of information concerning all methods of chromatographic analysis. The standard manuscript is a description of recent original research that covers any or all phases of a specific separation problem, principle, or method. Manuscripts which have a high degree of novelty and fundamental significance to the field of separation science are particularly encouraged. It is expected the authors will clearly state in the Introduction how their method compares in some markedly new and improved way to previous published related methods. Analytical performance characteristics of new methods including sensitivity, tested limits of detection or quantification, accuracy, precision, and specificity should be provided. Manuscripts which describe a straightforward extension of a known analytical method or an application to a previously analyzed and/or uncomplicated sample matrix will not normally be reviewed favorably. Manuscripts in which mass spectrometry is the dominant analytical method and chromatography is of marked secondary importance may be declined.