{"title":"Preparation of berberine hydrochloride-Ag nanoparticle composite antibacterial dressing based on 3D printing technology.","authors":"Chen Chen, Maomei Xie, Yueling Yan, Yongyuan Li, Zhiyao Li, Tong Zhang, Zanyan Gao, Liyi Deng, Haixia Wang","doi":"10.1177/08853282231222191","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, Ag nanoparticle (Ag NP)-loaded antibacterial dressings have attracted much attention in high-level medical dressings. However, the high cytotoxicity of Ag NP has always been a problem. In this paper, we examined the improvement of antibacterial activity of berberine hydrochloride (BBR) with Ag NP, the results showed that the combined use of BBR and Ag NP can effectively reduce the dosage of Ag NP while ensuring the inhibition of bacterial growth, thus an intermediate layer dressing containing combined drugs were prepared. At the same time, the top dressing of polyvinyl alcohol (PVA) solid film and the PVA bottom dressings with three kinds of leakage structures were prepared by 3D printing technology. Three kinds of PVA bottom dressings showed high quality consistency, and the greater the number of leak holes, the higher the porosity value of the dressing, while the swelling ratio value of the bottom layer dressing with three holes was the lowest. Finally, three types of BBR-Ag NP composite antibacterial dressings (3D-BBR-Ag NP) can be obtained by self-assembling of the top dressing, the intermediate layer dressing, and the bottom dressings with three kinds of leakage structures. The cumulative drug release results showed that dressing with more holes had a faster drug release rate compared to the other two ones with fewer leakage holes. Besides, five drug release kinetic models were used to investigate the cumulative BBR release profiles for three types of 3D-BBR-Ag NP. And the three types of composite dressings showed strong antibacterial activity after 6 h of cultivation with <i>staphylococcus aureus</i>. The study showed that the antibacterial activity of the self-assembled dressing prepared by combination of BBR with Ag NP can be improved, and the drug release rate of the hydrogel dressing can be flexibly controlled through 3D printing technology.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"808-820"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282231222191","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, Ag nanoparticle (Ag NP)-loaded antibacterial dressings have attracted much attention in high-level medical dressings. However, the high cytotoxicity of Ag NP has always been a problem. In this paper, we examined the improvement of antibacterial activity of berberine hydrochloride (BBR) with Ag NP, the results showed that the combined use of BBR and Ag NP can effectively reduce the dosage of Ag NP while ensuring the inhibition of bacterial growth, thus an intermediate layer dressing containing combined drugs were prepared. At the same time, the top dressing of polyvinyl alcohol (PVA) solid film and the PVA bottom dressings with three kinds of leakage structures were prepared by 3D printing technology. Three kinds of PVA bottom dressings showed high quality consistency, and the greater the number of leak holes, the higher the porosity value of the dressing, while the swelling ratio value of the bottom layer dressing with three holes was the lowest. Finally, three types of BBR-Ag NP composite antibacterial dressings (3D-BBR-Ag NP) can be obtained by self-assembling of the top dressing, the intermediate layer dressing, and the bottom dressings with three kinds of leakage structures. The cumulative drug release results showed that dressing with more holes had a faster drug release rate compared to the other two ones with fewer leakage holes. Besides, five drug release kinetic models were used to investigate the cumulative BBR release profiles for three types of 3D-BBR-Ag NP. And the three types of composite dressings showed strong antibacterial activity after 6 h of cultivation with staphylococcus aureus. The study showed that the antibacterial activity of the self-assembled dressing prepared by combination of BBR with Ag NP can be improved, and the drug release rate of the hydrogel dressing can be flexibly controlled through 3D printing technology.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.