Pharmacological Characterization of the Endocannabinoid Sensor GRABeCB2.0.

IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Cannabis and Cannabinoid Research Pub Date : 2024-10-01 Epub Date: 2023-12-08 DOI:10.1089/can.2023.0036
Simar Singh, Dennis Sarroza, Anthony English, Maya McGrory, Ao Dong, Larry Zweifel, Benjamin B Land, Yulong Li, Michael R Bruchas, Nephi Stella
{"title":"Pharmacological Characterization of the Endocannabinoid Sensor GRAB<sub>eCB2.0</sub>.","authors":"Simar Singh, Dennis Sarroza, Anthony English, Maya McGrory, Ao Dong, Larry Zweifel, Benjamin B Land, Yulong Li, Michael R Bruchas, Nephi Stella","doi":"10.1089/can.2023.0036","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> The endocannabinoids (eCBs), 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamine (AEA), are produced by separate enzymatic pathways, activate cannabinoid (CB) receptors with distinct pharmacological profiles, and differentially regulate pathophysiological processes. The genetically encoded sensor, GRAB<sub>eCB2.0</sub>, detects real-time changes in eCB levels in cells in culture and preclinical model systems; however, its activation by eCB analogues produced by cells and by phyto-CBs remains uncharacterized, a current limitation when interpreting changes in its response. This information could provide additional utility for the tool in <i>in vivo</i> pharmacology studies of phyto-CB action. <b>Materials and Methods:</b> GRAB<sub>eCB2.0</sub> was expressed in cultured HEK293 cells. Live cell confocal microscopy and high-throughput fluorescent signal measurements. <b>Results:</b> 2-AG increased GRAB<sub>eCB2.0</sub> fluorescent signal (EC<sub>50</sub>=85 nM), and the cannabinoid 1 receptor (CB<sub>1</sub>R) antagonist, SR141716 (SR1), decreased GRAB<sub>eCB2.0</sub> signal (IC<sub>50</sub>=3.3 nM), responses that mirror their known potencies at the CB<sub>1</sub>R. GRAB<sub>eCB2.0</sub> fluorescent signal also increased in response to AEA (EC<sub>50</sub>=815 nM), the eCB analogues 2-linoleoylglycerol and 2-oleoylglycerol (EC<sub>50</sub>=632 and 868 nM, respectively), Δ<sup>9</sup>-tetrahydrocannabinol (Δ<sup>9</sup>-THC), and Δ<sup>8</sup>-THC (EC<sub>50</sub>=1.6 and 2.0 μM, respectively), and the artificial CB<sub>1</sub>R agonist, CP55,940 (CP; EC<sub>50</sub>=82 nM); however their potencies were less than what has been described at CB<sub>1</sub>R. Cannabidiol (CBD) did not affect basal GRAB<sub>eCB2.0</sub> fluorescent signal and yet reduced the 2-AG stimulated GRAB<sub>eCB2.0</sub> responses (IC<sub>50</sub>=9.7 nM). <b>Conclusions:</b> 2-AG and SR1 modulate the GRAB<sub>eCB2.0</sub> fluorescent signal with EC<sub>50</sub> values that mirror their potencies at CB<sub>1</sub>R, whereas AEA, eCB analogues, THC, and CP increase GRAB<sub>eCB2.0</sub> fluorescent signal with EC<sub>50</sub> values significantly lower than their potencies at CB<sub>1</sub>R. CBD reduces the 2-AG response without affecting basal signal, suggesting that GRAB<sub>eCB2.0</sub> retains the negative allosteric modulator (NAM) property of CBD at CB<sub>1</sub>R. This study describes the pharmacological profile of GRAB<sub>eCB2.0</sub> to improve interpretation of changes in fluorescent signal in response to a series of known eCBs and CB<sub>1</sub>R ligands.</p>","PeriodicalId":9386,"journal":{"name":"Cannabis and Cannabinoid Research","volume":" ","pages":"1250-1266"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535446/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cannabis and Cannabinoid Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/can.2023.0036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The endocannabinoids (eCBs), 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamine (AEA), are produced by separate enzymatic pathways, activate cannabinoid (CB) receptors with distinct pharmacological profiles, and differentially regulate pathophysiological processes. The genetically encoded sensor, GRABeCB2.0, detects real-time changes in eCB levels in cells in culture and preclinical model systems; however, its activation by eCB analogues produced by cells and by phyto-CBs remains uncharacterized, a current limitation when interpreting changes in its response. This information could provide additional utility for the tool in in vivo pharmacology studies of phyto-CB action. Materials and Methods: GRABeCB2.0 was expressed in cultured HEK293 cells. Live cell confocal microscopy and high-throughput fluorescent signal measurements. Results: 2-AG increased GRABeCB2.0 fluorescent signal (EC50=85 nM), and the cannabinoid 1 receptor (CB1R) antagonist, SR141716 (SR1), decreased GRABeCB2.0 signal (IC50=3.3 nM), responses that mirror their known potencies at the CB1R. GRABeCB2.0 fluorescent signal also increased in response to AEA (EC50=815 nM), the eCB analogues 2-linoleoylglycerol and 2-oleoylglycerol (EC50=632 and 868 nM, respectively), Δ9-tetrahydrocannabinol (Δ9-THC), and Δ8-THC (EC50=1.6 and 2.0 μM, respectively), and the artificial CB1R agonist, CP55,940 (CP; EC50=82 nM); however their potencies were less than what has been described at CB1R. Cannabidiol (CBD) did not affect basal GRABeCB2.0 fluorescent signal and yet reduced the 2-AG stimulated GRABeCB2.0 responses (IC50=9.7 nM). Conclusions: 2-AG and SR1 modulate the GRABeCB2.0 fluorescent signal with EC50 values that mirror their potencies at CB1R, whereas AEA, eCB analogues, THC, and CP increase GRABeCB2.0 fluorescent signal with EC50 values significantly lower than their potencies at CB1R. CBD reduces the 2-AG response without affecting basal signal, suggesting that GRABeCB2.0 retains the negative allosteric modulator (NAM) property of CBD at CB1R. This study describes the pharmacological profile of GRABeCB2.0 to improve interpretation of changes in fluorescent signal in response to a series of known eCBs and CB1R ligands.

内源性大麻素传感器 GRABeCB2.0 的药理学特征。
简介:内源性大麻素(eCBs)、2-芳香酰甘油(2-AG)和芳香酰乙醇胺(AEA)由不同的酶解途径产生,可激活具有不同药理特征的大麻素(CB)受体,并以不同方式调节病理生理过程。基因编码传感器 GRABeCB2.0 可检测细胞培养和临床前模型系统中 eCB 水平的实时变化;然而,细胞和植物 CB 产生的 eCB 类似物对它的激活作用仍未定性,这是目前解释其反应变化时的一个局限。这些信息可为植物-CB 作用的体内药理学研究提供更多有用的工具。材料与方法在培养的 HEK293 细胞中表达 GRABeCB2.0。活细胞共聚焦显微镜和高通量荧光信号测量。结果:2-AG 增加了 GRABeCB2.0 荧光信号(EC50=85 nM),大麻素 1 受体(CB1R)拮抗剂 SR141716(SR1)降低了 GRABeCB2.0 信号(IC50=3.3 nM),这些反应反映了它们在 CB1R 上的已知效力。GRABeCB2.0 荧光信号在 AEA(EC50=815 nM)、eCB 类似物 2-linoleoylglycerol 和 2-oleoylglycerol(EC50 分别为 632 和 868 nM)、Δ9-四氢大麻酚(Δ9-THC)和Δ8-THC(EC50=1.6 和 2.0 μM),以及人工 CB1R 激动剂 CP55,940 (CP;EC50=82 nM);但它们的效力低于 CB1R 的描述。大麻二酚(CBD)不会影响基础 GRABeCB2.0 荧光信号,但会降低 2-AG 刺激 GRABeCB2.0 的反应(IC50=9.7 nM)。结论2-AG和SR1调节GRABeCB2.0荧光信号的EC50值反映了它们在CB1R上的效力,而AEA、eCB类似物、THC和CP增加GRABeCB2.0荧光信号的EC50值明显低于它们在CB1R上的效力。CBD 可降低 2-AG 反应而不影响基础信号,这表明 GRABeCB2.0 保留了 CBD 在 CB1R 上的负异位调节剂(NAM)特性。本研究描述了 GRABeCB2.0 的药理学特征,以更好地解释荧光信号在一系列已知 eCB 和 CB1R 配体作用下的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cannabis and Cannabinoid Research
Cannabis and Cannabinoid Research PHARMACOLOGY & PHARMACY-
CiteScore
6.80
自引率
7.90%
发文量
164
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信