{"title":"Hydrogen sulfide regulates arsenic-induced cell death in yeast cells by modulating the antioxidative system.","authors":"Lihua Wu, Xia Yao, Haiyan Li, Yanfei Chen","doi":"10.1139/cjm-2023-0068","DOIUrl":null,"url":null,"abstract":"<p><p>Arsenic (As) is a metal with potentially toxic effects on different organisms. Hydrogen sulfide (H<sub>2</sub>S) plays a vital role in mitigating heavy metal toxicity by reducing oxidative stress in plants and animals. However, the role of H<sub>2</sub>S in alleviating arsenic toxicity in yeast cells remains unclear. In this study, the role of NaHS (exogenous physiological H<sub>2</sub>S) in alleviating As-induced yeast cell death was investigated. Yeast cells in the logarithmic phase were pretreated with 0.05 mmol/L NaHS for 6 h, and then incubated in the YPD medium with or without 1 mmol/L As. After 12 h of treatment, relative survival rate, H<sub>2</sub>S content, oxidative stress biomarkers, and antioxidant machinery were measured. Our results showed that sodium arsenite-induced yeast cell death and pretreatment with 0.05 mmol/L NaHS significantly alleviated sodium arsenite-induced cell death. Under sodium arsenite conditions, the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) increased, accompanied by the inhibition of the catalase (CAT) activity and the downregulation of <i>CTT1</i> expression. However, the activities of the superoxide dismutase (SOD) and glutathion peroxidase (GPX) increased, and the expression of <i>SOD1</i> and <i>GPX2</i> was markedly upregulated in the group treated with sodium arsenite. When yeast cells were pretreated with NaHS, the intracellular ROS and MDA levels decreased significantly, and the activities of SOD, CAT, and GPX increased significantly. This was associated with a significant increase in relative survival rate and H<sub>2</sub>S content compared to the arsenic treatment alone. Our findings indicate that NaHS alleviates sodium arsenite-induced yeast cell death, mainly by enhancing the antioxidant defense system.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2023-0068","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic (As) is a metal with potentially toxic effects on different organisms. Hydrogen sulfide (H2S) plays a vital role in mitigating heavy metal toxicity by reducing oxidative stress in plants and animals. However, the role of H2S in alleviating arsenic toxicity in yeast cells remains unclear. In this study, the role of NaHS (exogenous physiological H2S) in alleviating As-induced yeast cell death was investigated. Yeast cells in the logarithmic phase were pretreated with 0.05 mmol/L NaHS for 6 h, and then incubated in the YPD medium with or without 1 mmol/L As. After 12 h of treatment, relative survival rate, H2S content, oxidative stress biomarkers, and antioxidant machinery were measured. Our results showed that sodium arsenite-induced yeast cell death and pretreatment with 0.05 mmol/L NaHS significantly alleviated sodium arsenite-induced cell death. Under sodium arsenite conditions, the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) increased, accompanied by the inhibition of the catalase (CAT) activity and the downregulation of CTT1 expression. However, the activities of the superoxide dismutase (SOD) and glutathion peroxidase (GPX) increased, and the expression of SOD1 and GPX2 was markedly upregulated in the group treated with sodium arsenite. When yeast cells were pretreated with NaHS, the intracellular ROS and MDA levels decreased significantly, and the activities of SOD, CAT, and GPX increased significantly. This was associated with a significant increase in relative survival rate and H2S content compared to the arsenic treatment alone. Our findings indicate that NaHS alleviates sodium arsenite-induced yeast cell death, mainly by enhancing the antioxidant defense system.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.