Co-selection mechanism for bacterial resistance to major chemical pollutants in the environment.

IF 8 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Science of the Total Environment Pub Date : 2024-02-20 Epub Date: 2023-12-13 DOI:10.1016/j.scitotenv.2023.169223
Meixia Huo, Xiangyue Xu, Kun Mi, Wenjin Ma, Qin Zhou, Xudong Lin, Guyue Cheng, Lingli Huang
{"title":"Co-selection mechanism for bacterial resistance to major chemical pollutants in the environment.","authors":"Meixia Huo, Xiangyue Xu, Kun Mi, Wenjin Ma, Qin Zhou, Xudong Lin, Guyue Cheng, Lingli Huang","doi":"10.1016/j.scitotenv.2023.169223","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial resistance is an emerging global public health problem, posing a significant threat to animal and human health. Chemical pollutants present in the environment exert selective pressure on bacteria, which acquire resistance through co-resistance, cross-resistance, co-regulation, and biofilm resistance. Resistance genes are horizontally transmitted in the environment through four mechanisms including conjugation transfer, bacterial transformation, bacteriophage transduction, and membrane vesicle transport, and even enter human bodies through the food chain, endangering human health. Although the co-selection effects of bacterial resistance to chemical pollutants has attracted widespread attention, the co-screening mechanism and co-transmission mechanisms remain unclear. Therefore, this article summarises the current research status of the co-selection effects and mechanism of environmental pollutants resistance, emphasising the necessity of studying the co-selection mechanism of bacteria against major chemical pollutants, and lays a solid theoretical foundation for conducting risk assessment of bacterial resistance.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"169223"},"PeriodicalIF":8.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2023.169223","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial resistance is an emerging global public health problem, posing a significant threat to animal and human health. Chemical pollutants present in the environment exert selective pressure on bacteria, which acquire resistance through co-resistance, cross-resistance, co-regulation, and biofilm resistance. Resistance genes are horizontally transmitted in the environment through four mechanisms including conjugation transfer, bacterial transformation, bacteriophage transduction, and membrane vesicle transport, and even enter human bodies through the food chain, endangering human health. Although the co-selection effects of bacterial resistance to chemical pollutants has attracted widespread attention, the co-screening mechanism and co-transmission mechanisms remain unclear. Therefore, this article summarises the current research status of the co-selection effects and mechanism of environmental pollutants resistance, emphasising the necessity of studying the co-selection mechanism of bacteria against major chemical pollutants, and lays a solid theoretical foundation for conducting risk assessment of bacterial resistance.

细菌对环境中主要化学污染物产生抗药性的共同选择机制。
细菌耐药性是一个新出现的全球公共卫生问题,对动物和人类健康构成重大威胁。环境中的化学污染物对细菌产生选择性压力,细菌通过共抗性、交叉抗性、共调控和生物膜抗性获得抗药性。耐药性基因通过共轭传递、细菌转化、噬菌体转导和膜囊运输等四种机制在环境中水平传播,甚至通过食物链进入人体,危害人类健康。虽然细菌对化学污染物耐药性的共筛选效应已引起广泛关注,但其共筛选机制和共转运机制仍不清楚。因此,本文总结了环境污染物耐药性的共筛选效应和机制的研究现状,强调了研究细菌对主要化学污染物耐药性共筛选机制的必要性,为开展细菌耐药性风险评估奠定了坚实的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信