Single Idiosyncratic Ionic Generator Working in Iso-Osmotic Solutions Via Ligand Confined Assembled in Gaps Between Nanosheets

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bi-Ying Liu, Yu-Hui Zhang, Dr. Yongchao Qian, Dr. Di Quan, Mei-Juan Jia, Xiao-Yan Jin, Min Zhou, Prof. Xiang-Yu Kong, Prof. Lei Jiang
{"title":"Single Idiosyncratic Ionic Generator Working in Iso-Osmotic Solutions Via Ligand Confined Assembled in Gaps Between Nanosheets","authors":"Bi-Ying Liu,&nbsp;Yu-Hui Zhang,&nbsp;Dr. Yongchao Qian,&nbsp;Dr. Di Quan,&nbsp;Mei-Juan Jia,&nbsp;Xiao-Yan Jin,&nbsp;Min Zhou,&nbsp;Prof. Xiang-Yu Kong,&nbsp;Prof. Lei Jiang","doi":"10.1002/anie.202317361","DOIUrl":null,"url":null,"abstract":"<p>Numerous reported bioinspired osmotic energy conversion systems employing cation-/anion-selective membranes and solutions with different salinity are actually far from the biological counterpart. The iso-osmotic power generator with the specific ionic permselective channels (e.g., K<sup>+</sup> or Na<sup>+</sup> channels) which just allow specific ions to get across and iso-osmotic solutions still remain challenges. Inspired by nature, we report a bioinspired K<sup>+</sup>-channel by employing a K<sup>+</sup> selective ligand, 1,1,1-tris{[(2′-benzylaminoformyl)phenoxy]methyl}ethane (BMP) and graphene oxide membrane. Specifically, the K<sup>+</sup> and Na<sup>+</sup> selectivity of the prepared system could reach up to ≈17.8, and the molecular dynamics simulation revealed that the excellent permselectivity of K<sup>+</sup> mainly stemmed from the formed suitable channel size. Thus, we assembled the K<sup>+</sup>-selective iso-osmotic power generator (KSIPG) with the power density up to ≈15.1 mW/m<sup>2</sup> between equal concentration solutions, which is higher than traditional charge-selective osmotic power generator (CSOPG). The proposed strategy has well shown the realizable approach to construct single-ion selective channels-based highly efficient iso-osmotic energy conversion systems and would surely inspire new applications in other fields, including self-powered systems and medical materials, etc.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202317361","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous reported bioinspired osmotic energy conversion systems employing cation-/anion-selective membranes and solutions with different salinity are actually far from the biological counterpart. The iso-osmotic power generator with the specific ionic permselective channels (e.g., K+ or Na+ channels) which just allow specific ions to get across and iso-osmotic solutions still remain challenges. Inspired by nature, we report a bioinspired K+-channel by employing a K+ selective ligand, 1,1,1-tris{[(2′-benzylaminoformyl)phenoxy]methyl}ethane (BMP) and graphene oxide membrane. Specifically, the K+ and Na+ selectivity of the prepared system could reach up to ≈17.8, and the molecular dynamics simulation revealed that the excellent permselectivity of K+ mainly stemmed from the formed suitable channel size. Thus, we assembled the K+-selective iso-osmotic power generator (KSIPG) with the power density up to ≈15.1 mW/m2 between equal concentration solutions, which is higher than traditional charge-selective osmotic power generator (CSOPG). The proposed strategy has well shown the realizable approach to construct single-ion selective channels-based highly efficient iso-osmotic energy conversion systems and would surely inspire new applications in other fields, including self-powered systems and medical materials, etc.

Abstract Image

在等渗透溶液中通过配体在纳米片之间的间隙中封闭装配实现单一离子发生器的工作原理
许多报道的生物启发渗透能量转换系统都采用了阳离子/阴离子选择性膜和不同盐度的溶液,但实际上与生物对应系统相去甚远。具有特定离子选择性通道(如 K+ 或 Na+ 通道)的等渗透能量发生器只允许特定离子穿过,而等渗透溶液仍然是个挑战。受自然界的启发,我们报告了一种生物启发的 K+ 通道,它采用了 K+ 选择性配体、1,1,1-三{[(2'-苄基氨基甲酰基)苯氧基]甲基}乙烷(BMP)和氧化石墨烯膜。分子动力学模拟显示,K+的良好选择性主要源于形成了合适的通道尺寸。因此,我们组装出了 K+选择性等渗透发电装置(KSIPG),其等浓度溶液间的功率密度高达 ~15.1 mW/m2,高于传统的电荷选择性渗透发电装置(CSOPG)。所提出的策略很好地展示了构建基于单离子选择性通道的高效等渗透能量转换系统的可实现方法,必将在自供电系统和医疗材料等其他领域激发新的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信