{"title":"Study of passive steering mechanism for small Mars surface exploration rovers","authors":"Asahi Oe, Shin-Ichiro Nishida, Shintaro Nakatani","doi":"10.1016/j.jterra.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Planetary surface exploration rovers are required to have the ability to travel over uneven ground such as sandy or rocky terrain. In addition, to maintain long-term functionality under severe mass constraints, the rover must be highly reliable with a simple configuration. The reduction in the number of actuators will also contribute to a reduction in the number of electrical components involved and improve reliability. This paper proposes a lightweight and simple traveling and steering mechanism that combines a path-following system based on the difference in rotational speed of the left and right wheels when traveling in a curve and a passive Ackermann mechanism without an actuator, assuming a small exploration rover of a size and mass that can be mounted on a Japanese launch vehicle. We also propose a correction method to improve the path-following performance. We also developed a prototype wheeled rover of the target size and weight, and tested and evaluated the effectiveness of the proposed method in following the target path and overcoming obstacle on simulated soil.</p></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489823000976","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Planetary surface exploration rovers are required to have the ability to travel over uneven ground such as sandy or rocky terrain. In addition, to maintain long-term functionality under severe mass constraints, the rover must be highly reliable with a simple configuration. The reduction in the number of actuators will also contribute to a reduction in the number of electrical components involved and improve reliability. This paper proposes a lightweight and simple traveling and steering mechanism that combines a path-following system based on the difference in rotational speed of the left and right wheels when traveling in a curve and a passive Ackermann mechanism without an actuator, assuming a small exploration rover of a size and mass that can be mounted on a Japanese launch vehicle. We also propose a correction method to improve the path-following performance. We also developed a prototype wheeled rover of the target size and weight, and tested and evaluated the effectiveness of the proposed method in following the target path and overcoming obstacle on simulated soil.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.