{"title":"Constitutive relations for anisotropic porous solids undergoing small strains whose material moduli depend on the density and the pressure","authors":"K.R. Rajagopal , R. Bustamante","doi":"10.1016/j.ijengsci.2023.104005","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Recently, Arumugam et al. (2023) developed a constitutive relation for the response of isotropic inhomogeneous compressible elastic solids in order to describe the response of the trabecular bone. Since porous solids such as bones, cement concrete, rocks, metallic alloys, etc., are </span>anisotropic, in this short note we develop a constitutive relation for such bodies that exhibit transverse </span>isotropy and also having two preferred directions of symmetry. Another characteristic of bones is that they exhibit different response characteristics in tension and compression, and hence any constitutive relation that is developed has to be capable of describing this. Also, the material moduli depend on both the density and the mean value of the stress (mechanical pressure), as is to be expected in a porous solid. In the constitutive relation that is developed in this paper, though the stress and the linearized strain appear linearly in the constitutive relation, the relationship is nonlinear. We also derive the response of such solids when undergoing uniaxial extension and compression, simple shear and torsion.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722523001969","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, Arumugam et al. (2023) developed a constitutive relation for the response of isotropic inhomogeneous compressible elastic solids in order to describe the response of the trabecular bone. Since porous solids such as bones, cement concrete, rocks, metallic alloys, etc., are anisotropic, in this short note we develop a constitutive relation for such bodies that exhibit transverse isotropy and also having two preferred directions of symmetry. Another characteristic of bones is that they exhibit different response characteristics in tension and compression, and hence any constitutive relation that is developed has to be capable of describing this. Also, the material moduli depend on both the density and the mean value of the stress (mechanical pressure), as is to be expected in a porous solid. In the constitutive relation that is developed in this paper, though the stress and the linearized strain appear linearly in the constitutive relation, the relationship is nonlinear. We also derive the response of such solids when undergoing uniaxial extension and compression, simple shear and torsion.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.