S. A. Kostikov, M. S. Grinkrug, S. A. Gordin, J. Yiqiang
{"title":"Numerical Investigation of Thermal Performance of a Trombe Wall of a New Design with Glazing for Cold Climatic Conditions","authors":"S. A. Kostikov, M. S. Grinkrug, S. A. Gordin, J. Yiqiang","doi":"10.1134/S0040601523120078","DOIUrl":null,"url":null,"abstract":"<p>The paper is devoted to the problems arising in using a Trombe wall under cold climatic conditions. These walls have a considerable disadvantage in cold climates. After sunrise, the solar energy falls on a Trombe wall through the air and heats up the air in it very quickly. This results in insufficient heat storage in the Trombe wall and an increase in thermal energy losses to the ambient air from the room through the glazing. The main purpose of the study is to develop a new design solution for the Trombe wall, which will reduce heat losses through the glazing while maintaining a sufficient level of heat storage capacity in cold climates. Application of this wall will be most effective in areas located in the range of latitudes from 40° to 50°. A detailed description and engineering substantiation of the new design solution for the Trombe wall are presented. A mathematical model of heat-transfer processes and a solution algorithm used as the basis for the numerical experiment were developed. During the entire heating period, the average air temperature in the studied room was kept in the range comfortable for continuous attendance. Introduction of the newly designed Trombe wall will reduce the annual consumption of external energy resources and cut down CO<sub>2</sub> emission by 58%, i.е., its amount entering the atmosphere will be decreased by 18% as compared to the classical Trombe wall under the same climatic conditions. Thus, this study has yielded meaningful information about measures that can be used for improvement of the thermal performance of the Trombe wall for its proper operation in a cold climate.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"70 12","pages":"1041 - 1050"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601523120078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper is devoted to the problems arising in using a Trombe wall under cold climatic conditions. These walls have a considerable disadvantage in cold climates. After sunrise, the solar energy falls on a Trombe wall through the air and heats up the air in it very quickly. This results in insufficient heat storage in the Trombe wall and an increase in thermal energy losses to the ambient air from the room through the glazing. The main purpose of the study is to develop a new design solution for the Trombe wall, which will reduce heat losses through the glazing while maintaining a sufficient level of heat storage capacity in cold climates. Application of this wall will be most effective in areas located in the range of latitudes from 40° to 50°. A detailed description and engineering substantiation of the new design solution for the Trombe wall are presented. A mathematical model of heat-transfer processes and a solution algorithm used as the basis for the numerical experiment were developed. During the entire heating period, the average air temperature in the studied room was kept in the range comfortable for continuous attendance. Introduction of the newly designed Trombe wall will reduce the annual consumption of external energy resources and cut down CO2 emission by 58%, i.е., its amount entering the atmosphere will be decreased by 18% as compared to the classical Trombe wall under the same climatic conditions. Thus, this study has yielded meaningful information about measures that can be used for improvement of the thermal performance of the Trombe wall for its proper operation in a cold climate.