{"title":"Cyclin D3 Colocalizes with Myogenin and p21 in Skeletal Muscle Satellite Cells during Early-Stage Functional Overload","authors":"Minenori Ishido","doi":"10.1267/ahc.23-00041","DOIUrl":null,"url":null,"abstract":"</p><p>Myogenic cell differentiation is modulated by multiple regulatory factors, such as myogenin, p21, and cyclin D3 during myogenesis <i>in vitro</i>. It is also recognized that myogenin and p21 play important roles in regulating muscle satellite cell (SC) differentiation during overload-induced muscle hypertrophy <i>in vivo</i>. However, the expression patterns and functional role of cyclin D3 in the progress of muscle hypertrophy remain unclear. Thus, the present study investigated cyclin D3 expression in skeletal muscles during early-stage functional overload. Plantaris muscles were exposed to functional overload due to ablation of the gastrocnemius and soleus muscles. As a result, cyclin D3 expression was detected in the nuclei of SCs but not in myonuclei on day 1 after surgery. Cyclin D3 expression, after functional overload, gradually increased, reaching a maximum on day 7 along with myogenin expression. Moreover, in response to the functional overload, cyclin D3 was expressed simultaneously with myogenin and p21 in SC nuclei. Therefore, the present study suggests that cyclin D3 with myogenin and p21 may interactively regulate SC differentiation during early-stage functional overload.</p>\n<p></p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1267/ahc.23-00041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Myogenic cell differentiation is modulated by multiple regulatory factors, such as myogenin, p21, and cyclin D3 during myogenesis in vitro. It is also recognized that myogenin and p21 play important roles in regulating muscle satellite cell (SC) differentiation during overload-induced muscle hypertrophy in vivo. However, the expression patterns and functional role of cyclin D3 in the progress of muscle hypertrophy remain unclear. Thus, the present study investigated cyclin D3 expression in skeletal muscles during early-stage functional overload. Plantaris muscles were exposed to functional overload due to ablation of the gastrocnemius and soleus muscles. As a result, cyclin D3 expression was detected in the nuclei of SCs but not in myonuclei on day 1 after surgery. Cyclin D3 expression, after functional overload, gradually increased, reaching a maximum on day 7 along with myogenin expression. Moreover, in response to the functional overload, cyclin D3 was expressed simultaneously with myogenin and p21 in SC nuclei. Therefore, the present study suggests that cyclin D3 with myogenin and p21 may interactively regulate SC differentiation during early-stage functional overload.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.