Modeling the Past Hypothesis: A Mechanical Cosmology

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Jordan Scharnhorst, Anthony Aguirre
{"title":"Modeling the Past Hypothesis: A Mechanical Cosmology","authors":"Jordan Scharnhorst,&nbsp;Anthony Aguirre","doi":"10.1007/s10701-023-00745-3","DOIUrl":null,"url":null,"abstract":"<div><p>There is a paradox in the standard model of cosmology. How can matter in the early universe have been in thermal equilibrium, indicating maximum entropy, but the initial state also have been low entropy (the “past hypothesis\"), so as to underpin the second law of thermodynamics? The problem has been highly contested, with the only consensus being that gravity plays a role in the story, but with the exact mechanism undecided. In this paper, we construct a well-defined mechanical model to study this paradox. We show how it reproduces the salient features of standard big-bang cosmology with surprising success, and we use it to produce novel results on the statistical mechanics of a gas in an expanding universe. We conclude with a discussion of potential uses of the model, including the explicit computation of the time-dependent coarse-grained entropies needed to investigate the past hypothesis.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00745-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

There is a paradox in the standard model of cosmology. How can matter in the early universe have been in thermal equilibrium, indicating maximum entropy, but the initial state also have been low entropy (the “past hypothesis"), so as to underpin the second law of thermodynamics? The problem has been highly contested, with the only consensus being that gravity plays a role in the story, but with the exact mechanism undecided. In this paper, we construct a well-defined mechanical model to study this paradox. We show how it reproduces the salient features of standard big-bang cosmology with surprising success, and we use it to produce novel results on the statistical mechanics of a gas in an expanding universe. We conclude with a discussion of potential uses of the model, including the explicit computation of the time-dependent coarse-grained entropies needed to investigate the past hypothesis.

Abstract Image

模拟过去假说:机械宇宙学
宇宙学标准模型中存在一个悖论。早期宇宙中的物质处于热平衡状态,表明熵值最大,但初始状态又是低熵("过去假说"),如何才能支撑热力学第二定律?这个问题一直备受争议,唯一的共识是万有引力在故事中扮演了一定的角色,但具体机制尚无定论。在本文中,我们构建了一个定义明确的力学模型来研究这一悖论。我们展示了它如何以惊人的成功再现了标准大爆炸宇宙学的显著特征,并利用它得出了膨胀宇宙中气体统计力学的新结果。最后,我们讨论了该模型的潜在用途,包括明确计算研究过去假说所需的随时间变化的粗粒度熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信